

Welcome to PresQT

PresQT (Preservation Quality Tool) is an open-source tool with RESTful services to
improve Preservation and Re-use of Research Data and Software.

Note

Development is underway by the development team in the Center for Research Computing at Notre Dame.
This documentation will grow/be changed throughout the life of the PresQT project.
Readers should expect that pages will often be incomplete and/or move as features are actively
being developed and implemented.
Please send any feedback to the content presented here to Noel Recla nrecla@nd.edu

More information can be found here https://presqt.crc.nd.edu/

Current Target Integrations:

	Target

	Collection

	Search

	Detail

	Download

	Upload

	Transfer In [Targets]

	Transfer Out [Targets]

	Hash Algorithms

	Keyword Get

	Keywords Upload

	OSF

	✅

	✅

	✅

	✅

	✅

	✅[Github, CurateND, Zenodo, GitLab, FigShare]

	✅ [Github, Zenodo, GitLab, FigShare]

	[sha256, md5]

	✅

	✅

	curateND

	✅

	✅

	✅

	✅

	❌

	❌

	✅ [OSF, Github, Zenodo, GitLab, FigShare]

	[md5]

	✅

	❌

	Github

	✅

	✅

	✅

	✅

	✅

	✅[OSF, CurateND, Zenodo, GitLab, FigShare]

	✅ [OSF, Zenodo, GitLab, FigShare]

	[]

	✅

	✅

	Zenodo

	✅

	✅

	✅

	✅

	✅

	✅[OSF, Github, CurateND, GitLab, FigShare]

	✅ [OSF, Github, GitLab, FigShare]

	[md5]

	✅

	✅

	GitLab

	✅

	✅

	✅

	✅

	✅

	✅[OSF, Github, CurateND, Zenodo, FigShare]

	✅ [OSF, GitHub, Zenodo, FigShare]

	[sha256]

	✅

	✅

	FigShare

	✅

	✅

	✅

	✅

	✅

	✅[OSF, Github, CurateND, Zenodo, Gitlab]

	✅ [OSF, Github, Gitlab, Zenodo]

	[md5]

	✅

	✅

Current Service Integrations:

	Service

	Functionality

	EaaSI

	Send resources from a PresQT server to EaaSI to generate an emulation proposal

	Keyword Enhancement

	Suggest/add keywords to existing keywords

	FAIRshare Evaluator

	Evaluate the FAIR-ness of a resource

	FAIRshake Assessment

	Manually assess the FAIRness of a resource

Contents

	Architecture/Infrastructure
	Development Environments

	QA/Production Deployments

	Development Environment Setup
	Prerequisites

	Local Development Environment Setup

	Cron Container

	Authentication/Authorization
	Target Token Instructions

	User Notes
	Transfer Details

	Developer Notes
	Testing

	Docker Commands

	Updating Documentation

	GitHub Differences

	Target Integration
	Target Endpoints

	Resource Endpoints

	Resource Download Endpoint

	Resource Upload Endpoint

	Resource Transfer Endpoint

	Keyword Enhancement Endpoint

	Error Handling

	API Endpoints
	Authentication

	Duplicate File Handling

	Searching Resource Collections

	Paginating Resource Collections

	Target Endpoints

	Resource Endpoints

	Resource Download Endpoints

	Resource Upload Endpoints

	Resource Transfer Endpoints

	Keyword Enhancement Endpoints

	Web Services
	Fixity

	File Transfer Service (FTS) Metadata

	Keyword Assignment

	Preservation Quality

	Services
	EaaSI (Emulation-as-a-Service Infrastructure) Service

	FAIR Evaluator Service

	FAIRshake Assessment Service

	Service Endpoints
	Service Endpoints

	Keyword Enhancement

	EaaSI Endpoints

	FAIRshare Endpoints

	FAIRshake Endpoints

	Resources
	Links

	Example BagIts

	QA Testing
	Resources

	BagIt Tool

	Getting Authorization Tokens From Partner Sites

	Test Files

	Known Bugs And Issues

	Testing Instructions

	Verifying Fixity

	Verifying Keyword Enhancement

	Services

	Other Integrations
	Whole Tale Integration Proposal

	Whole Tale Integration Implementation

	Under Development

Indices

	Index

	Module Index

	Search Page

Architecture/Infrastructure

Development Environments

PresQT uses Docker throughout its pipeline to make it as easy as possible for newcomers to the
project to get up and running with PresQT services. This was accomplished by creating an easy to
use development environment using Docker compose.

The diagram below illustrates how we are using Docker Compose to create a constellation of 2
containers on developer machines representing the two essential components of PresQT:

	Nginx

	Serves as a security layer for incoming requests to PresQT

	Can also serve as a load balancer in the future

	Django/Gunicorn

	After passing through the Nginx layer, this container processes API requests from users and
then takes the necessary actions to fulfill the user’s requests by communicating with partner
services via the their own APIs.

INSERT IMAGE HERE

QA/Production Deployments

Unsurprisingly, there is a significant overlap between the developer setup and the QA/Production
deployment architecture. The following is how they will vary:

	One machine (the “Web Server”) will be the host for the Nginx container and one or more identical
Django containers that will respond to APIs requests from client researchers in a load balanced manner.

INSERT IMAGE HERE

Development Environment Setup

Prerequisites

	Local installation of Docker for Mac/Windows/Linux

	Knowledge of Git procedures

	Knowledge of setting environment variables

	Knowledge of docker-compose utility.

Local Development Environment Setup

	Clone the repo to your local machine in the desired folder location:

$ git clone https://github.com/ndlib/presqt.git

	Export required ENV_VARS:

	ENVIRONMENT: Should be either production or development

	SECRET_KEY: A Django “secret key” value.

Example Exportation
$ export ENVIRONMENT=development
$ export SECRET_KEY=y4xgryt7ex9g+4mcs4=^sg5afp3lz#=94eb6=6o6l61o=a31y_h

	Export optional ENV_VARS for testing:

	CURATE_ND_TEST_TOKEN: The test token for Curate’s API.

	GITHUB_TEST_USER_TOKEN: The test token for GitHub’s API.

	OSF_TEST_USER_TOKEN: The test token for OSF’s API.

	OSF_PRIVATE_USER_TOKEN: The private test token for OSF’s API.

	OSF_UPLOAD_TEST_USER_TOKEN: The upload test token for OSF’s API.

	OSF_PRESQT_FORK_TOKEN: The PresQT fork user test token for OSF’s API.

	ZENODO_TEST_USER_TOKEN: The test token for Zenodo’s API.

	GITLAB_TEST_USER_TOKEN: The test token for GitLab’s API.

	FIGSHARE_TEST_USER_TOKEN: The test token for FigShare’s API.

Note

Contact an administrator to get the target test tokens.

4. Execute docker-compose up within the repo’s base folder.

$ docker-compose up --build

	Navigate to https://localhost/api_v1/ in your browser.

Cron Container

There is now a third docker container that is responsible for running clean up tasks at specified
times. It has been implemented in development to run the delete_outdated_mediafiles command every
15 minutes. The command has also been altered slightly to delete any mediafiles held in these
directories when you are in a development environment. The command is set to run daily at 4:30am for
our other servers.

Authentication/Authorization

PresQT will not have the ability to create a ‘session’ for the user based on authentication. It will
be expecting tokens to be passed through the header of the request. When retrieving items it expects
‘presqt-source-token’ to be in the header. When depositing an item it expects ‘presqt-destination-token’
to be in the header.

Target Token Instructions

Open Science Framework

	Navigate to https://osf.io/ and login to your account.

[image: _images/osf_step_1.png]

	Upon logging in, click on your username in the top right corner and then click on Settings.

[image: _images/osf_step_2.png]

	Once in`` Settings, click on Personal Access Tokens in the left hand menu.

[image: _images/osf_step_3.png]

	Click on Create token.

[image: _images/osf_step_4.png]

	Create a token name and select all scope options. Then press Create token.

[image: _images/osf_step_5.png]

	Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

[image: _images/osf_step_6.png]

CurateND

	Navigate to https://curate.nd.edu and login to your account.

[image: _images/curate_nd_step_1.png]

	In the top right corner, select Manage and then click on API Access Tokens.

[image: _images/curate_nd_step_2.png]

	Click on Create New Token.

[image: _images/curate_nd_step_3.png]

	Make sure you copy this token somewhere securely.

[image: _images/curate_nd_step_4.png]

GitHub

	Navigate to https://github.com and login to your account.

[image: _images/github_step_1.png]

	In the top right corner, select your profile picture and then click on Settings.

[image: _images/github_step_2.png]

	In the bottom left of your settings, select Developer Settings.

[image: _images/github_step_3.png]

	On the left hand side of this screen, select Personal Access Tokens.

[image: _images/github_step_4.png]

	Click on Generate New Token.

[image: _images/github_step_5.png]

	Add a note about what the token will be used for, and select all scopes. Then select Generate Token.

[image: _images/github_step_6.png]

	Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

[image: _images/github_step_7.png]

Zenodo

	Navigate to https://zenodo.org and login to your account.

[image: _images/zenodo_step_1.png]

	In the top right corner, select your username and then click on Applications.

[image: _images/zenodo_step_2.png]

	In the Personal access tokens section, click on New token.

[image: _images/zenodo_step_3.png]

	Give the token a name and select all scopes, then click Create.

[image: _images/zenodo_step_4.png]

	Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

[image: _images/zenodo_step_5.png]

GitLab

	Navigate to https://gitlab.com and login to your account.

[image: _images/gitlab_step_1.png]

	In the top right corner, select your username and then click on Settings.

[image: _images/gitlab_step_2.png]

	In the left hand menu, select Access Tokens.

[image: _images/gitlab_step_3.png]

	Give the token a name and select all scopes, then click Create personal access token.

[image: _images/gitlab_step_4.png]

	Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

[image: _images/gitlab_step_5.png]

FigShare

	Navigate to https://figshare.com/account/login and login to your account.

[image: _images/figshare1.png]

	In the top right corner, select your username and then click on Applications.

[image: _images/figshare2.png]

	Scroll down to the bottom of the screen, and click Create Personal Token.

[image: _images/figshare3.png]

	Give the token a description (name), then click Save.

[image: _images/figshare4.png]

	Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

[image: _images/figshare5.png]

User Notes

Transfer Details

	Target

	As Source

	As Destination

	OSF

	Only provides checksums for OSF Storage files

Keywords written to ‘Tags’ attribute

	Writes PRESQT_FTS_METADATA.json file

Keywords written to ‘Tags’ attribute.

Stores all resources in OSF Storage

	curateND

	Provides checksums for all files

	N/A

	Github

	Does not provide checksums for files

Keywords written to ‘Topics’ attribute

	Writes PRESQT_FTS_METADATA.json file

Does not provide checksums for files

Keywords written to ‘Topics’ attribute

	Zenodo

	Provides checksums for all files

Keywords written to ‘Keywords’ attribute

	Writes PRESQT_FTS_METADATA.json file

Resources will be written in BagIt format as a ZIP file

Keywords written to ‘Keywords’ attribute

	GitLab

	Provides checksums for all files

Keywords written to ‘Tag List’ attribute

	Writes PRESQT_FTS_METADATA.json file

Keywords written to ‘Tag List’ attribute

	Figshare

	Provides checksums for all files

Keywords written to ‘Tags’ attribute

	Writes PRESQT_FTS_METADATA.json file

Resources will be written in BagIt format as a ZIP file

Keywords written to ‘Tags’ attribute

Developer Notes

Testing

A high code coverage percentage has been maintained with unit and integration tests for all code
using a package called Coverage (https://coverage.readthedocs.io/en/v4.5.x/) to track code coverage.

To run unit tests without using Coverage:

$ python manage.py test

To run unit tests using Coverage with comprehensive code coverage report generated into an HTML file:

coverage run manage.py test && coverage combine && coverage html

Note

This command will generate a directory that is ignored by Git via our .gitignore file. To see the
code coverage open the file /coverage_html/index.html in a browser.

Note

Coverage options are specified in a configuration file called .coveragerc. This is where you would
add files/directories you want to omit from the Coverage report.

Note

‘coverage combine’ will take the coverage files created for multiprocesses (located in the base directory)
and will combine them with the main coverage files . If a test using multiprocessing fails these
coverage files will remain and must be deleted manually.

We also tried to split unit and integration tests up between core PresQT code and Target code. Tests
that cover core code reside in presqt/api_v1/tests/ while target tests that cover target functions
reside in presqt/targets/{target_name}/tests/ .

Attention

All tests require their corresponding target tokens to be stored as environment variables since
these tokens can not be stored publicly. Contact an administrator for access to these.

Docker Commands

To rebuild the docker container after a new package has been added to the requirements files:

$ docker-compose up --build

Run the following command for an interactive -i terminal -t for this container:

$ docker exec -i -t presqt_presqt_django_1 /bin/ash

Updating Documentation

As the project grows we encourage developers to add documentation.
PresQT documentation is built using Sphinx and ReadtheDocs.

When documentation is added you should just need to run while in the /docs directory:

$ make clean
$ make html

Otherwise reference Sphinx documentation for more information on adding documentation,
https://www.sphinx-doc.org/en/master/usage/quickstart.html.

GitHub Differences

There is a slight difference in how we have implemented GitHub as opposed to other partners. Due to
the way GitHub’s API handles files, there is no way for us to hit an endpoint with a given id. The
only way to navigate to a files endpoint is to know the associated GitHub username and repository
title. We have decided to make our own unique id’s for these items by combining the repo_id and the
path to the file/dir.

Example of an id:

21387123:path2%Fto%2Ffile%2Ejpg

We then translate this into two get requests. The first one will be to the repo id.

Example:

https://api.github.com/repositories/21387123

From this, we can get a contents url that we can translate into a request.

Example:

https://api.github.com/repos/PresQT-QA-TEST/Good_Egg-PresQT2-/contents/path/to/file.jpg

Using this custom generated id, we can hit this endpoint on PresQT to get file details.

https://presqt-qa.crc.nd.edu/api_v1/targets/github/resources/21387123:path%252Fto%252Ffile%252Ejpg

Target Integration

The goal of PresQT is to make it as simple as possible for a new target to integrate itself with the
PresQT services. Below are lists of code actions to take when integrating a target.

Target Endpoints

‘Targets’ are providers the PresQT API will connect to such as OSF, CurateND, HubZero, etc. Since
PresQT doesn’t have a database, the Targets’ information will be held in a JSON file located in
/presqt/specs/targets.json. You must add data to this file to integrate with PresQT.

Target Collection/Details

	Add your target dictionary to the file presqt/specs/targets.json

Target JSON Details:

	Key

	Type

	Description

	name

	str

	Name of the Target. This will be used as path parameters in the URL

	readable_name

	str

	Human readable name of the Target for the front end

	status_url

	str

	Url which is 200 OK if the API works.

	token_url

	str

	Url where users can create their API tokens.

	supported_actions

	array

	Actions the target supports. Only make actions true when action is working

	resource_collection

	bool

	Get all top level resources for the user in this target

	resource_detail

	bool

	Get an individual resource’s details

	resource_download

	bool

	Download a resource

	resource_upload

	bool

	Upload a resource

	resource_transfer_in

	bool

	Transfer a resource in to the target

	resource_transfer_out

	bool

	Transfer a resource out of the target

	supported_transfer_partners

	dict

	Targets this target can transfer in and out of

	transfer_in

	array

	Targets this target can accept transfers from

	transfer_out

	array

	Targets this target can transfer to

	supported_hash_algorithms

	array

	The hash algorithms supported by the target

	infinite_depth

	bool

	Does the target support an infinite depth hierarchy?

	search_parameters

	array

	Which search parameters does the target support? options: [general, title, id, author]

	keywords

	bool

	Fetch keywords

	keywords_upload

	bool

	Upload keywords to the target specific keyword attribute.

Target JSON Example:

{
 "name": "osf",
 "readable_name": "OSF",
 "status_url": "https://api.osf.io/v2/nodes/",
 "token_url": "https://osf.io/settings/tokens",
 "supported_actions": {
 "resource_collection": true,
 "resource_detail": true,
 "resource_download": true,
 "resource_upload": true,
 "resource_transfer_in": true,
 "resource_transfer_out": true,
 "keywords": true,
 "keywords_upload": true
 },
 "supported_transfer_partners": {
 "transfer_in": ["github", "curate_nd"],
 "transfer_out": ["github"]
 },
 "supported_hash_algorithms": ["sha256", "md5"],
 "infinite_depth": true,
 "search_parameters": ["title", "id", "general", "author"]
}

There is a management command that will validate targets.json that can be run after you add your target.
It can be run manually with:

$ python manage.py validate_target_json

Otherwise the same management command is run when docker-compose up runs.
If the validation fails then it does not allow the docker containers to be spun up.

	Add your target directory inside presqt/targets/

	Your target integration functionality will exist here.

Resource Endpoints

Resource Collection

Targets that integrate with the Resources Collection API Endpoint must have a function that returns
a specifically structured dataset.

1. Update your target in presqt/specs/targets.json by setting
supported_actions.resource_collection to true.

	Add a function to return the resource collection inside of your target directory.

	If you would like to keep your file/function names consistent with what already exists
add this function at presqt/targets/<target_name>/functions/fetch/<target_name>_fetch_resources()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	query_parameter

	str

	The query_parameter parameters passed to the API View

	The function must return the following in this order:

	resources

	list

	list of Python dictionaries for each top level resource

	pages

	dict

	dictionary of pagination details

Resource dictionary details:

	kind

	str

	Type of Resource

Options: [container, item]

	kind_name

	str

	Target specific name for that kind

For example OSF kind_names are: [project, folder, file]

	container

	str

	ID of the container for the resource.

For example if the resource is a file in a folder then the container value would be the ID of the folder

Can be None if the resource has no container

	id

	str

	ID of the resource

	title

	str

	Title of the resource

Page dictionary details:

	first_page

	str

	The first page number

	previous_page

	str

	The previous page number

	next_page

	str

	The next page number

	last_page

	str

	The last page number

	total_pages

	str

	The total amount of pages

	per_page

	str

	The amount of resources per page

Example Resource Collection Function:

def <your_target_name>_fetch_resources(token, query_parameter):
 # Process to obtain resource collection IF search_parameter goes here.
 # Process to obtain resource collection goes here.
 # Variables below are defined here to show examples of structure.
 target_resources = get_target_resources()

 resources = []
 for resource in target_resources:
 resource.append({
 'kind': 'container',
 'kind_name': 'Project',
 'id': resource.id,
 'container': None,
 'title': resource.title
 })

 # Process to obtain page numbers goes here
 pages = {
 "first_page": '1',
 "previous_page": None,
 "next_page": None,
 "last_page": '1',
 "total_pages": '1',
 "per_page": 10
 }
 return resources, pages

	Add the resource collection function to presqt/api_v1/utilities/utils/function_router.py

	Follow the naming conventions laid out in this class’ docstring

	This will make the function available in core PresQT code

Resource Detail

Targets that integrate with the Resources Detail API Endpoint must have a function that returns
a specifically structured dataset that represents the resource.

1. Update your target in presqt/specs/targets.json by setting
supported_actions.resource_detail to true.

	Add a function to return the resource details inside of your target directory.

	If you would like to keep your file/function names consistent with what already exists add this function at
presqt/targets/<target_name>/functions/fetch/<target_name>_fetch_resource()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	resource_id

	str

	ID for the resource we want to fetch

	The function must return the following in this order:

	resource

	object

	Python object representing the resource requested

Resource dictionary details:

	kind

	str

	Type of Resource

Options: [container, item]

	kind_name

	str

	Target specific name for that kind

For example OSF kind_names are: [node, folder, file]

	id

	str

	ID of the resource

	title

	str

	Title of the resource

	date_created

	str

	Date the resource was created

	date_modified

	str

	Date the resource was last modified

	hashes

	dict

	Hashes of the resource in the target

Key must be the hash algorithm used value must be the hash itself

Can be an empty dict if no hashes exist

	extra

	dict

	Any extra target specific data.

Can be an empty dict

	children

	list

	A list of children resources, each child in the list must be a

dictionary that follows the structure of the resource_collection

dictionaries listed above. Example: [{‘kind’: ‘’, ‘kind_name’: ‘’,

‘id’: ‘’, ‘container’: ‘’, ‘title’: ‘’}]

Example Resource Collection Function:

def <your_target_name>_fetch_resource(token, resource_id):
 # Process to obtain resource details goes here.
 # Variables below are defined here to show examples of structure.

 resource = {
 "kind": "item",
 "kind_name": "file",
 "id": "12345",
 "title": "o_o.jpg",
 "date_created": "2019-05-13T14:54:17.129170Z",
 "date_modified": "2019-05-13T14:54:17.129170Z",
 "hashes": {
 "md5": "abca7ef057dcab7cb8d79c36243823e4",
 "sha256": "ea94ce55261720c56abb508c6dcd1fd481c30c09b7f2f5ab0b79e3199b7e2b55"
 },
 "extra": {
 "category": "project",
 "fork": false,
 "current_user_is_contributor": true,
 "preprint": false,
 "current_user_permissions": [
 "read",
 "write",
 "admin"
],
 },
 "children": []
 }
 return resource

	Add the resource detail function to presqt/api_v1/utilities/utils/function_router.py

	Follow the naming conventions laid out in this class’ docstring

	This will make the function available in core PresQT code

Resource Download Endpoint

1. Update your target in presqt/specs/targets.json by setting
supported_actions.resource_download to true.

	Add a function to perform the resource download inside of your target directory.

	If you would like to keep your file/function names consistent with what already exists add this function at presqt/targets/<target_name>/functions/download/<target_name>_download_resource()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	resource_id

	str

	ID for the resource we want to download

	process_info_path

	str

	The path to this download’s process_info_path

	action

	str

	The type of action occurring

	The function must return a dictionary with the following keys:

	resources

	list

	List of dictionaries containing resource data

	empty_containers

	list

	List of strings identifying empty container paths.

They need to be specified separately because they are written separate from the file data

	action_metadata

	dict

	Dictionary containing FTS metadata about the action occurring

	extra_metadata

	dict

	Dictionary containing extra metadata identified by partners

Resource Dictionary Details

	file

	bytes

	The file contents in byte format

	hashes

	dict

	Hashes of the resource in the target

Key must be the hash algorithm used value must be the hash itself

Can be an empty dict if no hashes exist

	title

	str

	Title of the file

	path

	str

	Path to save the file to at the destination

Start the path with a /

	source_path

	str

	Full path of the file at the source

Start the path with a /

	extra_metadata

	dict

	Dictionary containing any extra data to save to FTS metadata

Action Metadata Dictionary Details

	sourceUsername

	str

	Username of the user making the request at the source target

Extra Metadata Dictionary Details

	title

	str

	The title of the resource

	creators

	list

	List of dictionaries containing creator info {“first_name”: ‘’, “last_name”: ‘’, “ORCID”: ‘’}

	publication_date

	str

	The date the resource was published

	description

	str

	A brief description of the resource

	keywords

	list

	A list of associated keywords

	license

	str

	The resource’s license

	related_identifiers

	list

	A list of dictionaries containing identifiers {“type”: ‘doi’, “identifier”: ‘’}

	references

	str

	References related to the resource

	notes

	str

	Notes related to the resource

	If you want to keep track of the progress of the download there are two functions available
to do so. update_process_info() is for updating the total number of resources in the download
and increment_process_info() is for updating the number of resources gathered thus far.

Example Resource Download Function:

def <your_target_name>_download_resource(token, resource_id, process_info_path):
 # Process to download resource goes here.
 # Variables below are defined here to show examples of structure.
 resources = [
 {
 'file': binary_file_contents,
 'hashes': {'md5': '1ab2c3d4e5f6g', 'sha256': 'fh3383h83fh'},
 'title': 'file.jpg',
 'path': '/path/to/file.jpg',
 'source_path': 'project_name/path/to/file.jpg',
 'extra_metadata': {
 'dateSubmitted': '2019-10-22Z',
 'creator': 'Justin Branco',
 }
 },
 {
 'file': binary_file_contents,
 'hashes': {'md5': 'zadf23fg3', 'sha256': '9382hash383h'},
 'title': 'funnysong.mp3',
 'path': '/path/to/file/funnysong.mp3'
 'source_path': 'project_name/path/to/file/funnysong.mp3',
 'extra_metadata': {
 'dateSubmitted': '2019-10-22Z',
 'creator': 'Justin Branco',
 }
 }
]
 empty_containers = ['path/to/empty/container/', 'another/empty/']
 action_metadata = {"sourceUsername": contributor_name}
 extra_metadata = {
 "title": project_info['title'],
 "creators": creators,
 "publication_date": project_info['date_created'],
 "description": project_info['description'],
 "keywords": project_info['tags'],
 "license": license,
 "related_identifiers": identifiers,
 "references": None,
 "notes": None
 }
 return {
 'resources': files,
 'empty_containers': empty_containers,
 'action_metadata': action_metadata,
 'extra_metadata': extra_metadata
 }

	Add the resource download function to presqt/api_v1/utilities/utils/function_router.py

	Follow the naming conventions laid out in this class’ docstring

	This will make the function available in core PresQT code

Resource Upload Endpoint

1. Update your target in presqt/specs/targets.json by setting
supported_actions.resource_upload to true.

	Add a function to perform the resource upload inside of your target directory.

	If you would like to keep your file/function names consistent with what already exists add this function at presqt/targets/<target_name>/functions/upload/<target_name>_upload_resource()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	resource_id

	str

	ID of the resource requested

	resource_main_dir

	str

	Path to the main directory on the server for the resources to be uploaded

	hash_algorithm

	str

	Hash algorithm we are using to check for fixity

	file_duplicate_action

	str

	The action to take when a duplicate file is found

Options: [ignore, update]

	process_info_path

	str

	The path to this download’s process_info_path

	action

	str

	The type of action occurring

	The function must return a dictionary with the following keys:

	resources_ignored

	array

	Array of string paths of files that were ignored when uploading the resource

Path should have the same base as resource_main_dir

	resources_updated

	array

	Array of string paths of files that were updated when uploading the resource

Path should have the same base as resource_main_dir

	file_metadata_list

	list

	List of dictionaries that contains FTS metadata and hash info for each file

	action_metadata

	dict

	Dictionary containing FTS metadata about the action occurring

	project_id

	str

	ID of the parent project for this upload. Needed for metadata upload

	project_link

	str

	The link to either the resource or the home page of the user if not available through API

Metadata Dictionary Details

	actionRootPath

	str

	Original path of the file on the server before upload.

This is used to connect this metadata with download metadata if the action is a transfer.

	destinationHash

	dict

	Hash of the resource in the target that was calculated using the hash_algorithm given as a function parameter

Key must be the hash algorithm used value must be the hash itself

Can be an empty dict if no hashes exist

	destinationPath

	str

	Full path of the file at the destination

Start the path with a /

	title

	str

	Title of the file

Action Metadata Dictionary Details

	destinationUsername

	str

	Username of the user making the request at the destination target

Example Resource Upload Function:

def <your_target_name>_upload_resource(token, resource_id, resource_main_dir,
 hash_algorithm, file_duplicate_action):
 # Process to upload resource goes here.
 # Variables below are defined here to show examples of structure.
 file_metadata_list = [
 {
 "actionRootPath": 'resource_main_dir/path/to/updated/file.jpg',
 "destinationPath": '/path/to/updated/file.jpg',
 "title": 'file.jpg,
 "destinationHash": {'md5': '123456'} # hash_algorithm = 'md5'
 }
]
 resources_ignored = ['path/to/ignored/file.png', 'another/ignored/file.jpg']
 resources_updated = ['path/to/updated/file.jpg']
 action_metadata = {"destinationUsername": 'destination_username'}

 return {
 'resources_ignored': resources_ignored,
 'resources_updated': resources_updated,
 'action_metadata': action_metadata,
 'file_metadata_list': file_metadata_list,
 'project_id': '1234',
 'project_link': 'https://osf.io/1234'
 }

	Add a function to upload FTS metadata to the correct location within the resource’s parent project.

	If you would like to keep your file/function names consistent with what already exists add this function at presqt/targets/<target_name>/functions/upload_metadata/<target_name>_upload_metadata()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	project_id

	str

	The id of the parent project for the resource uploaded

	metadata_dict

	dict

	The FTS metadata dictionary to upload

At this point it will be a Python dict

	The function doesn’t return anything

Example Resource Upload Function:

def <your_target_name>_upload_metadata(token, project_id, metadata_dict):
 # Process to upload metadata goes here.

 # If you want to upload the extra metadata to fields supported by your API
 # you will have to add that functionality as well. The extra valuees are stored
 # in metadata_dict['extra_metadata]. IE:
 update_project_with_metadata(url, metadata_dict['extra_metadata'])

	Add the resource upload and upload metadata functions to presqt/api_v1/utilities/utils/function_router.py

	Follow the naming conventions laid out in this class’ docstring

	This will make the function available in core PresQT code

Resource Transfer Endpoint

1. Update your target in presqt/specs/targets.json by setting
supported_actions.resource_transfer_in, supported_actions.resource_transfer_out,
supported_actions.supported_transfer_partners.transfer_in, and
supported_actions.supported_transfer_partners.transfer_out appropriately.

The resource transfer endpoint utilizes the Download and Upload functions. If these two functions
are in place then transfer is available.

2. To support Keyword Enhancement during the transfer process, add keyword functions as outlined
below in the Keyword Enhancement Endpoint section

Keyword Enhancement Endpoint

Targets that want the ability to suggest or enhance new keywords must provide keyword functions.

Suggest Keywords

To support the suggestion of keywords, a keyword fetch function must be written that will
fetch keywords from the target.

	Update your target in presqt/specs/targets.json by setting keywords to true.

	Add a function to return a dictionary of keywords found in the target.

	If you would like to keep your file/function names consistent with what already exists add this function at
presqt/targets/<target_name>/functions/keywords/<target_name>_fetch_keywords()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	resource_id

	str

	ID for the resource we want to get keywords from

	The function must return a dictionary with the following keys:

	keywords

	array

	Array of keywords found in the target

	<attribute_name>

	array

	Array of keywords found for this attribute

Name the key whatever the attribute name is. See example for more details.

Example Keyword Fetch Function:

def <your_target_name>_fetch_keywords(token, resource_id):
 # Process to fetch keywords goes here.
 # Variables below are defined here to show examples of structures.
 # This target has keywords in two attributes, 'topics' and 'tags'.
 keyword_dictionary = {
 'topics': ['cat', 'dog'],
 'tags': ['food', 'water'],
 'keywords': ['cat', 'dog', 'food', 'water']
 }

 return keyword_dictionary

	Add the keyword fetch function to presqt/api_v/utilities/utils/function_router.py

	Follow the naming conventions laid out in this class’ docstring

	This will make the function available in core PresQT code

Enhance Keywords

To support the enhancement of keywords, a keyword upload function must be written that will
upload new enhanced keywords to the target.

	Update your target in presqt/specs/targets.json by setting keywords_upload to true.

	Add a function to upload give keywords to the target.

	If you would like to keep your file/function names consistent with what already exists add this function to
presqt/targets/<target_name>/functions/keywords/<target_name>_upload_keywords()

	The function must have the following parameters in this order:

	token

	str

	User’s token for the target

	resource_id

	str

	ID for the resource we want to upload keywords to

	keywords

	list

	List of new keywords to upload

	The function must return a dictionary with the following keys:

	updated_keywords

	list

	List of the final keyword list at the target

	project_id

	str

	The ID of the project containing this resource

Example Keyword Upload Function:

def <your_target_name>_upload_keywords(token, resource_id, keywords):
 # Process to upload keywords goes here.
 # Variables below are defined here to show examples of structures.
 updated_keywords = ['cat', 'food', 'feline', 'grub']
 project_id = '1234'

 return {'updated_keywords': updated_keywords, 'project_id': project_id}

	Add the keyword upload function to presqt/api_v/utilities/utils/function_router.py

	Follow the naming conventions laid out in this class’ docstring

	This will make the function available in core PresQT code

Error Handling

When any of these target functions are called within PresQT core code they are wrapped inside of a
Try-Except clause which looks for the exception PresQTResponseException. The definition of this
exception can be found at presqt.utilities.exceptions.exceptions.PresQTResponseException.

API Endpoints

Authentication

Refer to the authentication details here.

Duplicate File Handling

When Uploading or Transferring resources a header, presqt-file-duplicate-action, must be
included. The options are ignore or update. This header tells the target uploading the
resource what to do when a file being uploaded already exists in the source target.

Ignore will not update the duplicate file, even if the contents of the files don’t match.

Update will only update the duplicate file if the contents of the files don’t match.

Searching Resource Collections

Search results are ordered by date modified unless the target does not support it.

Only a single search filter can be used at a time.

Search Filters

General search across all available target search parameters: resources/?general=search_value

Search by project ‘title’: resources/?title=Project+Title

Search by project ‘id’: resources/?id=123456

Search by project ‘author’: resources/?author=bfox6

Search by project ‘keywords’: resources/?keywords=cat

Paginating Resource Collections

Pagination has been added at the collection level to improve load times. Targets now return Pagination
information for users resources, as well as searched resources.

Page Parameter

Pagination across all available targets: resources/?page=page_number

Target Endpoints

Target Collection

	
GET /api_v1/targets/

	Retrieve details of all Targets.

Example request:

GET /api_v1/targets/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "name": "osf",
 "readable_name": "OSF",
 "status_url": "https://api.osf.io/v2/nodes/",
 "token_url": "https://osf.io/settings/tokens",
 "supported_actions": {
 "resource_collection": true,
 "resource_detail": true,
 "resource_download": true,
 "resource_upload": true,
 "resource_transfer_in": true,
 "resource_transfer_out": true
 "keywords": true,
 "keywords_upload": true,
 },
 "supported_transfer_partners": {
 "transfer_in": [
 "github",
 "curate_nd"
],
 "transfer_out": [
 "github"
]
 },
 "supported_hash_algorithms": [
 "sha256",
 "md5"
],
 "infinite_depth": true
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/",
 "method": "GET"
 }
]
 },
 {
 "name": "curate_nd",
 "readable_name": "CurateND",
 "status_url": "https://curate.nd.edu/api/items",
 "token_url": "https://curate.nd.edu/api/access_tokens",
 "supported_actions": {
 "resource_collection": true,
 "resource_detail": true,
 "resource_download": true,
 "resource_upload": false,
 "resource_transfer_in": false,
 "resource_transfer_out": true,
 "keywords": true,
 "keywords_upload": false,
 },
 "supported_transfer_partners": {
 "transfer_in": [],
 "transfer_out": [
 "osf",
 "github"
]
 },
 "supported_hash_algorithms": [
 "md5"
],
 "infinite_depth": false
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/curate_nd/",
 "method": "GET"
 }
]
 }
]

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Targets successfully retrieved

Target Details

	
GET /api_v1/targets/(str: target_name)/

	Retrieve details of a single Target.

Example request:

GET /api_v1/targets/OSF/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "name": "osf",
 "readable_name": "OSF",
 "status_url": "https://api.osf.io/v2/nodes/",
 "token_url": "https://osf.io/settings/tokens",
 "supported_actions": {
 "resource_collection": true,
 "resource_detail": true,
 "resource_download": true,
 "resource_upload": true,
 "resource_transfer_in": true,
 "resource_transfer_out": true,
 "keywords": true,
 "keywords_upload": true,
 },
 "supported_transfer_partners": {
 "transfer_in": [
 "github",
 "curate_nd"
],
 "transfer_out": [
 "github"
]
 },
 "supported_hash_algorithms": [
 "sha256",
 "md5"
],
 "infinite_depth": true
 "links": [
 {
 "name": "Collection",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/",
 "method": "GET"
 },
 {
 "name": "Upload",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/",
 "method": "POST"
 },
 {
 "name": "Transfer",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/",
 "method": "POST"
 }
]
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Target successfully retrieved

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Target name

Resource Endpoints

Resource Collection

	
GET /api_v1/targets/(str: target_name)/resources/

	Retrieve details of all top level resources for a given Target and User Token

Example request:

GET /api_v1/targets/OSF/resources/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "resources": [
 {
 "kind": "container",
 "kind_name": "project",
 "id": "cmn5z",
 "container": null,
 "title": "Test Project",
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/cmn5z/",
 "method": "GET"
 }
]
 },
 {
 "kind": "container",
 "kind_name": "project",
 "id": "12345",
 "container": null,
 "title": "Egg Project",
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/12345/",
 "method": "GET"
 }
]
 }
],
 "pages": {
 "first_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?page=1",
 "previous_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?page=5",
 "next_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?page=7",
 "last_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?page=30",
 "total_pages": 1,
 "per_page": 10,
 "base_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?page="
 }
}

Example request w/ search parameter:

GET /api_v1/targets/OSF/resources?title=egg/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example request w/ search parameter and page parameter:

GET /api_v1/targets/OSF/resources?title=egg&page=3/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Search filtering rules can be found here.

	Request Headers

	
	presqt-source-token – User’s token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Resources successfully retrieved

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Target does not support the action resource_collection

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The search query is not formatted correctly.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Token is invalid

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Target name

Resource Detail

	
GET /api_v1/targets/(str: target_name)/resources/(str: resource_id).json/

	Retrieve details of a Resource in JSON format

Example request:

GET /api_v1/targets/OSF/resources/1234.json/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "kind": "container",
 "kind_name": "project",
 "id": "cmn5z",
 "title": "Test Project",
 "date_created": "2019-05-13T15:06:34.521000Z",
 "date_modified": "2019-05-13T15:06:34.521000Z",
 "hashes": {
 "md5": null,
 "sha256": null
 },
 "extra": {
 "last_touched": "2019-11-07T17:00:51.680957",
 "materialized_path": "/Test Project",
 "current_version": 1,
 "provider": "googledrive",
 "path": "/Test Project",
 "current_user_can_comment": true,
 "guid": "byz93",
 "checkout": null,
 "tags": [],
 "size": null
 },
 "children": [
 {
 "kind": "container",
 "kind_name": "storage",
 "id": "cmn5z:osfstorage",
 "container": "cmn5z",
 "title": "osfstorage",
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/cmn5z:osfstorage/",
 "method": "GET"
 }
]
 },
 {
 "kind": "container",
 "kind_name": "folder",
 "id": "5cd9832cf244ec0021e5f245",
 "container": "cmn5z:osfstorage",
 "title": "Images",
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/5cd9832cf244ec0021e5f245/",
 "method": "GET"
 }
]
 },
 {
 "kind": "item",
 "kind_name": "file",
 "id": "5cd98510f244ec001fe5632f",
 "container": "5cd9832cf244ec0021e5f245",
 "title": "22776439564_7edbed7e10_o.jpg",
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/5cd98510f244ec001fe5632f/",
 "method": "GET"
 }
]
 }
],
 "links": [
 {
 "name": "Download",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/cmn5z.zip/",
 "method": "GET"
 },
 {
 "name": "Upload",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/cmn5z/",
 "method": "POST"
 },
 {
 "name": "Transfer",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/cmn5z/",
 "method": "POST"
 }
],
 "actions": [
 "Transfer"
]
}

	Request Headers

	
	presqt-source-token – User’s token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Resource successfully retrieved

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Target does not support the action resource_detail

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid format given. Must be json

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Token is invalid

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – User does not have access to this Resource

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Target name

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Resource with this ID not found for this user

	410 Gone [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11] – Resource no longer available

Resource Download Endpoints

Download Resource

	
GET /api_v1/targets/(str: target_name)/resources/(str: resource_id).zip/

	Retrieve a Resource as a ZIP file. This endpoint begins the download process but does not
return the zip file. Rather, it returns a link which can be used to the hit the
Job Status endpoint to check in on the process.

Example request:

GET /api_v1/targets/OSF/resources/1234.zip/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "message": "The server is processing the request.",
 "download_job_zip": "https://presqt-prod.crc.nd.edu/api_v1/job_status/download.zip/",
 "download_job_json": "https://presqt-prod.crc.nd.edu/api_v1/job_status/download.json/"
}

	Request Headers

	
	presqt-source-token – User’s token for the source target

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Resource has begun downloading

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Target does not support the action resource_download

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – User currently has processes in progress.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-email-opt-in missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid format given. Must be zip

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Target name

Resource Download Job Status

	
GET /api_v1/job_status/download.json/

	Use the Job Status endpoint to check in on the Download Process. Provide the
presqt-source-token in the headers.

Example request

GET /api_v1/job_status/download/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the download request is still in progress:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "job_percentage": 27,
 "status": "in_progress",
 "status_code": null,
 "message": "Downloading files from OSF..."
}

Example response if the download request finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": "200",
 "message": "Download successful. See PRESQT_FTS_METADATA.json for more details.",
 "zip_name": "osf_download_cmn5z.zip",
 "failed_fixity": [
 "/Test Project/googledrive/PresQT Swimlane Activity Diagram 03_21_19 (2).pdf",
 "/Test Project/googledrive/module_responses.csv",
 "/Test Project/googledrive/Google Images/IMG_4740.jpg",
 "/Test Project/googledrive/Character Sheet - Alternative - Print Version.pdf"
],
 "job_percentage": 100,
 "status": "finished"
}

Example response if the download failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "job_percentage": 0,
 "status": "failed",
 "status_code": 404,
 "message": "Resource with id 'bad_id' not found for this user."
}

	Request Headers

	
	presqt-source-token – User’s Token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Download has finished successfully

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Download is being processed on the server

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid format given. Must be json or zip.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Download failed on the server

	
GET /api_v1/job_status/download.zip/

	Check on the Download Process for the given user.
If download has failed or is in progress this endpoint will return a JSON payload detailing this.
If download has completed this endpoint will return the zip file of the resource originally requested.

Example request:

GET /api_v1/job_status/download.zip/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the download request is still in progress:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "job_percentage": 27,
 "status": "in_progress",
 "status_code": null,
 "message": "Downloading files from OSF..."
}

Example response if download finished successfully:

HTTP/1.1 200 OK
Content-Type: application/zip

Payload is ZIP file

Example response if the download failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "job_percentage": 0,
 "status": "failed",
 "status_code": 404,
 "message": "Resource with id 'bad_id' not found for this user."
}

	Request Headers

	
	presqt-source-token – User’s Token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Download has finished successfully

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Download is being processed on the server

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid format given. Must be json or zip.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Download failed on the server

	
PATCH /api_v1/job_status/upload/

	Cancel the Download Process for the given user.`.

If the download has finished before it can be cancelled it will return the finished info from process_info.json.

If the download was successfully cancelled then it will return the cancelled info from process_info.json.

Example request:

PATCH /api_v1/job_status/download/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if download cancelled successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": "499",
 "message": "Download was cancelled by the user"
}

Example response if download finished before endpoint was able to cancel:

HTTP/1.1 406 OK
Content-Type: application/json

{
 "status_code": "200",
 "message": "Download successful."
}

	Request Headers

	
	presqt-source-token – User’s Token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Download cancelled

	406 Not Acceptable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] – Download finished before cancellation

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

Resource Upload Endpoints

Upload New Top Level Resource

	
POST /api_v1/targets/(str: target_name)/resources/

	Upload a new top level resource, for instance a Project. This endpoint begins the Upload
process. It returns a link which can be used to the hit the Job Status endpoint to check
in on the process.

Example request:

POST /api_v1/targets/OSF/resources/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "message": "The server is processing the request.",
 "upload_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/upload/"
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either update or ignore)

	Form Parameters

	
	presqt-file – The Resource to Upload. Must be a BagIt file in ZIP format.

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Resource has begun uploading

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Target does not support the action resource_upload

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The file, presqt-file, is not found in the body of the request

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The file provided is not a zip file

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The file provided is not in BagIt format

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Checksums failed to validate

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-file-duplicate-action missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-email-opt-in missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid file_duplicate_action header give. The options are ignore or update

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Repository is not formatted correctly. Multiple directories exist at the top level

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Repository is not formatted correctly. Files exist at the top level

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – User currently has processes in progress.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Token is invalid

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Target name

Upload To Existing Resource

	
POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/

	Upload a resource to an existing container. This endpoint begins the Upload
process. It returns a link which can be used to the hit the Job Status endpoint to check
in on the process.

Example request:

POST /api_v1/targets/OSF/resources/1234/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "message": "The server is processing the request.",
 "upload_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/upload/"
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either update or ignore)

	Form Parameters

	
	presqt-file – The Resource to Upload. Must be a BagIt file in ZIP format.

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Resource has begun uploading

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Target does not support the action resource_upload

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-email-opt-in missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The file, presqt-file, is not found in the body of the request

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The file provided is not a zip file

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The file provided is not in BagIt format

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Checksums failed to validate

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-file-duplicate-action missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid file_duplicate_action header give. The options are ignore or update

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – User currently has processes in progress.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Token is invalid

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – User does not have access to this Resource

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Target name

	410 Gone [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11] – Resource no longer available

Resource Upload Job Status

	
GET /api_v1/job_status/upload/

	Check on the Upload Process for the given user.

Example request:

GET /api_v1/job_status/upload/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the upload is in progress:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": null,
 "message": "Uploading files to OSF...",
 "status": "in_progress",
 "job_percentage": 0
}

Example response if upload finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": "200",
 "message": "Upload successful.",
 "status": "finished",
 "failed_fixity": [],
 "resources_ignored": [],
 "resources_updated": [],
 "job_percentage": 99
}

Example response if upload failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "job_percentage": 0,
 "status": "failed",
 "status_code": 404,
 "message": "Resource with id 'bad_id' not found for this user."
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Upload has finished successfully

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Upload is being processed on the server

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Upload failed on the server

	
PATCH /api_v1/job_status/upload/

	Cancel the Upload Process for the given user.
If the upload has finished before it can be cancelled it will return the finished info from process_info.json.
If the upload was successfully cancelled then it will return the cancelled info from process_info.json.

Example request:

PATCH /api_v1/job_status/upload/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if upload cancelled successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": "499",
 "message": "Upload was cancelled by the user"
}

Example response if upload finished before endpoint was able to cancel:

HTTP/1.1 406 OK
Content-Type: application/json

{
 "status_code": "200",
 "message": "Upload successful."
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Upload cancelled

	406 Not Acceptable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] – Upload finished before cancellation

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

Resource Transfer Endpoints

Note

The Upload and Transfer endpoints are the same POST endpoints except
the specification of where the source resource is coming from.

For Uploads the resource will be a file provided as form-data

For Transfers the location of resource (source_target and resource_id) will be specified in the body as JSON

Transfer New Top Level Resource

	
POST /api_v1/targets/(str: target_name)/resources/

	Transfer a resource from a source target to a destination target. Make the resource a new
top level resource, for instance a Project. This endpoint begins the Transfer
process. It returns a link which can be used to the hit the Job Status endpoint to check
in on the process.

Example request:

POST /api_v1/targets/OSF/resources/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "source_target_name":"github",
 "source_resource_id": "209372336",
 "keywords": ["keywords", "to", "add"]
 }

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "message": "The server is processing the request.",
 "transfer_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/transfer/"
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	presqt-source-token – User’s Token for the source target

	presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either update or ignore)

	presqt-keyword-action – Type of keyword action to perform (Either automatic, manual or none)

	JSON Parameters

	
	source_target_name (string) – The Source Target where the Resource being Transferred exists

	source_resource_id (string) – The ID of the Resource to Transfer

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Resource has begun transferring

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Source Target does not support the action resource_transfer_out

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Destination Target does not support the action resource_transfer_in

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-file-duplicate-action missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-email-opt-in missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid file-duplicate-action header give. The options are ignore or update

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – source_resource_id can’t be none or blank

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – source_resource_id was not found in the request body

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – source_target_name was not found in the request body

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – keywords was not found in the request body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – keywords must be in list format.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Source target does not allow transfer to the destination target

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Destination target does not allow transfer to the source target

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid presqt-keyword-action header given. The options are automatic, manual, or none

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-keyword-action missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – User currently has processes in progress.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Source Token is invalid

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Destination Token is invalid

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – User does not have access to the Resource to transfer

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Source Target name

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Destination Target name

	410 Gone [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11] – Resource to transfer is no longer available

Transfer To Existing Resource

	
POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/

	Transfer a resource from a source target to a destination target. Transfer to an existing resource.
This endpoint begins the Transfer process. It returns a link which can be used to
the hit the Job Status endpoint to check in on the process.

Example request:

POST /api_v1/targets/OSF/resources/1234/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "source_target_name":"github",
 "source_resource_id": "209372336",
 "keywords": ["keywords", "to", "add"]
 }

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "message": "The server is processing the request.",
 "transfer_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/transfer/"
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	presqt-source-token – User’s Token for the source target

	presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either update or ignore)

	presqt-keyword-action – Type of keyword action to perform (Either automatic, manual, or none)

	JSON Parameters

	
	source_target_name (string) – The Source Target where the Resource being Transferred exists

	source_resource_id (string) – The ID of the Resource to Transfer

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Resource has begun transferring

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Source Target does not support the action resource_transfer_out

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Destination Target does not support the action resource_transfer_in

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-file-duplicate-action missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-email-opt-in missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid file_duplicate_action header give. The options are ignore or update

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – source_resource_id can’t be none or blank

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – source_resource_id was not found in the request body

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – source_target_name was not found in the request body

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – keywords was not found in the request body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – keywords must be in list format.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Source target does not allow transfer to the destination target

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Destination target does not allow transfer to the source target

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Invalid presqt-keyword-action header given. The options are automatic, manual or none

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-keyword-action missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – User currently has processes in progress.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Source Token is invalid

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Destination Token is invalid

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – User does not have access to the Resource to transfer

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – User does not have access to the Resource to transfer to

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Source Target name

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Destination Target name

	410 Gone [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11] – Resource to transfer is no longer available

	410 Gone [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11] – Resource to transfer to is longer available

Resource Transfer Job Status

	
GET /api_v1/job_status/transfer/

	Check on the Transfer Process for the given user.

Example request:

GET /api_v1/job_status/transfer/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if transfer is in progress:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "status_code": null,
 "message": "Creating PRESQT_FTS_METADATA...",
 "job_percentage": 50
}

Example response if transfer finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": "200",
 "message": "Transfer successful.",
 "job_percentage": 99,
 "failed_fixity": [
 "/PrivateProject/README.md"
],
 "resources_ignored": [],
 "resources_updated": [],
 "enhanced_keywords": [
 "EGG",
 "DISORDERED SOLVENT",
 "Electrostatic Gravity Gradiometer",
 "animal house",
 "aqua",
 "Wasser",
],
 "initial_keywords": [
 "animals",
 "eggs",
 "water"
],
 "source_resource_id": "209372336",
 "destination_resource_id": "qadt3"
}

Example response if transfer failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
 "status_code": 404,
 "message": "The resource with id, 20938989898989872336, does not exist for this user.",
 "job_percentage": 0,
 "status": "failed"
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	presqt-source-token – User’s Token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Transfer has finished successfully

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Transfer is being processed on the server

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – Transfer failed on the server

	
PATCH /api_v1/job_status/transfer/

	Cancel the Transfer Process for the given user.
If the transfer has finished before it can be cancelled it will return the finished info from process_info.json.
If the transfer was successfully cancelled then it will return the cancelled info from process_info.json.

Example request:

PATCH /api_v1/job_status/transfer/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if transfer cancelled successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status_code": "499",
 "message": "Transfer was cancelled by the user"
}

Example response if transfer finished before endpoint was able to cancel:

HTTP/1.1 406 OK
Content-Type: application/json

{
 "status_code": "200",
 "message": "Transfer successful."
}

	Request Headers

	
	presqt-destination-token – User’s Token for the destination target

	presqt-source-token – User’s Token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Transfer cancelled

	406 Not Acceptable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] – Transfer finished before cancellation

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-destination-token missing in the request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – presqt-source-token missing in the request headers

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Ticket Number

Keyword Enhancement Endpoints

Get a Resource’s Keywords And Keyword Enhancements

	
GET /api_v1/targets/(str: target_name)/resources/(str: resource_id)/keywords/

	Retrieve a resource’s keywords that are both stored in the target and in the PresQT Metadata File (if one exists).
Send the keywords to a keyword enhancer. Return both the Target Keywords and Enhanced Keywords in the payload.

Example request:

GET /api_v1/targets/OSF/resources/1234/keywords/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "keywords": [
 "eggs",
 "animal",
 "water"
],
 "enhanced_keywords": [
 "animals",
 "Animals",
 "EGG",
 "Electrostatic Gravity Gradiometer",
 "water",
 "Water",
 "DISORDERED SOLVENT",
 "aqua",
 "Wasser",
 "dihydrogen oxide",
 "OXYGEN ATOM",
 "oxidane",
],
 "all_keywords": [
 "animals",
 "Animals",
 "EGG",
 "Electrostatic Gravity Gradiometer",
 "water",
 "Water",
 "DISORDERED SOLVENT",
 "aqua",
 "Wasser",
 "dihydrogen oxide",
 "OXYGEN ATOM",
 "oxidane",
 "eggs",
 "animal",
 "water"
]
}

	Request Headers

	
	presqt-source-token – User’s Token for the source target

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Keywords successfully fetched

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Source Target does not support the action keywords

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The resource type does not support keywords

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Source Token is invalid

Upload Keywords to a Resource

	
POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/keywords/

	Take a list of keywords and add them to the Resource’s keywords both in the target and in
the PresQT FTS Metadata file. The returned payload will contain both the new keywords added
and the final full list of keywords in the target.

Example request:

POST /api_v1/targets/OSF/resources/1234/keywords/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "keywords": ["cat", "water"]
 }

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "keywords_added": [
 "feline",
 "aqua",
 "dihydrogen oxide",
 "DISORDERED SOLVENT",
 "EGG",
 "Electrostatic Gravity Gradiometer",
 "oxidane",
 "OXYGEN ATOM",
 "Wasser",
 "Water"
],
 "final_keywords": [
 "feline",
 "aqua",
 "dihydrogen oxide",
 "DISORDERED SOLVENT",
 "EGG",
 "eggs",
 "Electrostatic Gravity Gradiometer",
 "oxidane",
 "OXYGEN ATOM",
 "Wasser",
 "water",
 "Water"
]
}

	Request Headers

	
	presqt-source-token – User’s Token for the source target

	JSON Parameters

	
	keywords (array) – An array of the keywords to upload

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Keywords successfully uploaded

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Source Target does not support the action keywords

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The Source Target does not support the action keywords_upload

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The resource type does not support keywords

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – keywords is missing from the request body

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – keywords must be in list format

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – Source Token is invalid

Web Services

Fixity

Tools

	Python Hashlib Library https://docs.python.org/3/library/hashlib.html

	BagIt Python Validation https://github.com/LibraryOfCongress/bagit-python#validation

PresQT Supported Hash Algorithms

The following is a master list of hash algorithms that are both supported by a target and supported
by Python’s HashLib library:

	sha256

	md5

Each individual target’s supported hash algorithms can be found in presqt/specs/targets.json

Resource Download Fixity

Fixity is checked during Resource Download by comparing the file hashes provided by the source target
with hashes that are generated after files are downloaded on to the server. If the provided hash and the
calculated hash match then fixity passes!

The download function will try and find a matching hash algorithm between the source target supported algorithms and
algorithms supported by the Python Hashlib library to use when generating hashes for files downloaded to the server.
If no hash algorithms match or if the source target does not provide file hashes then md5 is uses as a default.
It also counts this situation as fixity passing since we didn’t know what the original hash was.

Valid Hashes Provided + Fixity Passes Example:

{
 "sha256": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "md5": "a4536efb47b26eaf509edfdaca442037"
}

will yield

{
 "hash_algorithm": "sha256",
 "given_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "calculated_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "fixity": true
}

Valid Hashes Provided + Fixity Fails Example:

{
 "sha256": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "md5": "a4536efb47b26eaf509edfdaca442037"
}

will yield

{
 "hash_algorithm": "sha256",
 "given_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "calculated_hash": "12345678",
 "fixity": false
}

Blank Hashes Provided Example:

{
 "sha256": null,
 "md5": null
}

will yield

{
 "hash_algorithm": "md5",
 "given_hash": null,
 "calculated_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "fixity": true
}

Unknown Hashes Provided Example:

{
 "unknown_hasher": "12345",
 "special_hasher": "1234567"
}

will yield

{
 "hash_algorithm": "md5",
 "given_hash": null,
 "calculated_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
 "fixity": true
}

Resource Upload Fixity

During the resource upload process, fixity is checked in two locations. First, when files are saved
to the disk from the request. Second, after files are uploaded to the target.

[image: _images/upload_fixity.png]

Image 1: Where in the upload process fixity is checked

Fixity Check 1

Resources must be included in the POST request in BagIt format as a zip file. After unzipping the
file and saving it to the server we validate the bag using BagIt’s built in validator. If any files
saved don’t match the manifest originally given then the fixity has failed and the server will return
an error.

Generate New Hashes If Necessary

We now know that the currently saved files are the same as what the user sent forward. Before uploading
resources to the target we will make sure that there is a dictionary of hashes available generated by a hash algorithm
supported by the target. If the target supports a hash algorithm provided by the resource’s ‘bag’
then we will simply use those. If not, then we need to generate new hashes based on a target supported
hash algorithm.

Fixity Check 2

After resources are uploaded to the target, we compare the resources’ hashes brought back from the
target to the hashes we captured before. If any hashes don’t match then fixity fails. Since the
resources have already been uploaded we simply capture which resources’ fixity fails and pass that
along the response payload along with the message, ‘Upload successful but fixity failed’.

Resource Transfer Fixity

Since the Transfer endpoint takes advantage of the Download and Upload endpoints, fixity
is checked using all methods already existing in those endpoints.

File Transfer Service (FTS) Metadata

PresQT keeps track of file history of resources being updated by PresQT by passing along an
FTS Metadata file with each PresQT action. The file is titled PRESQT_FTS_METADATA.json.
Every time PresQT takes action on a resource, the source details about the files moved are written
to the metadata file.

Definition of PresQT FTS Metadata fields:

	allKeywords

	array

	All Keywords added to this resource via PresQT.

	actions

	array

	Array of PresQT actions that have taken place on the this project

	id

	string

	ID of the PresQT action (uuid4). Created at the time metadata is written

	actionDateTime

	string

	Date and time that the action took place

	actionType

	string

	Type of action (Download, Upload, Transfer)

	sourceTargetName

	string

	Name of the source target the action is taking place on

	sourceUsername

	string

	Requesting user’s source target username

	destinationTargetName

	string

	Name of the destination target the action is taking place on

	destinationUsername

	string

	Requesting user’s destination target username

	keywords

	dict

	Keyword enhancements that took place during this action

* Fields found in this dictionaries

	sourceKeywordsAdded*

	array

	The source keywords added during this action

This includes keywords in the target keywords found in FTS metadata file

	sourceKeywordsEnhanced*

	array

	The new keyword enhancements added to the target

	ontologies

	array

	Ontologies connected to the enhanced keywords added.

	enhancer*

	str

	The enhancement service used to enhance the keywords

	files

	array

	Array of files that were involved in the PresQT action

	sourcePath

	string

	Path of the file at the source target

	sourceHashes

	dict

	Object that contains the file hashes at the source target

	title

	string

	Title of the file at the source target

	extra

	dict

	Object that contains all extra metadata we can retrieve from the source target

	failedFixityInfo

	array

	Array containing dictionaries of info on files that failed fixity check

** Fields found in this dictionaries

	newGeneratedHash**

	string

	PresQT generated hash of the file

	algorithmUsed**

	string

	Hash Algorithm used for the newGeneratedHash

	reasonFixityFailed**

	string

	Reason fixity failed for the file

	destinationPath

	string

	Path of the file at the destination target

	destinationHashes

	dict

	Object that contains the file hashes at the destination target

Example of PresQT FTS Metadata generated by a transfer of a project from GitHub to OSF:

{
 "allKeywords": ["cat", "dog", "feline", "doggo", "pupper"],
 "actions": [
 {
 "id": "bc5a48dc-d1f9-46bd-9137-48fe4843df77",
 "actionDateTime": "2019-11-12 15:45:45.309566+00:00",
 "actionType": "resource_transfer_in",
 "sourceTargetName": "github",
 "sourceUsername": "github_username",
 "destinationTargetName": "osf",
 "destinationUsername": "osf_username",
 "keywords": {
 "sourceKeywordsAdded": ["cat", "dog"],
 "sourceKeywordsEnhanced": ["feline", "doggo", "pupper"],
 "ontologies": [
 {
 "keywords": [
 "doggo",
 "pupper"
],
 "ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
 "ontology_id": "CHEBI_153377",
 "categories": [
 "canine"
]
 },
 {
 "keywords": [
 "feline"
],
 "ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
 "ontology_id": "CHEBI_153377",
 "categories": [
 "felines"
]
 },
],
 "enhancer": "scigraph"
 },
 "files": {
 "created": [
 {
 "destinationPath": "NewProject/osfstorage/funnyfunnyimages/Screen_Shot.png",
 "destinationHashes": {
 "md5": "3505a89c3cbb82873a107ae41f3997c3"
 },
 "failedFixityInfo": [
 {
 "NewGeneratedHash": "3505a89c3cbb82873a107ae41f3997c3",
 "algorithmUsed": "md5",
 "reasonFixityFailed": "Either a Source Hash was not provided or the source hash algorithm is not supported."
 }
],
 "title": "Screen_Shot.png",
 "sourceHashes": {},
 "sourcePath": "/NewProject/funnyfunnyimages/Screen_Shot.png",
 "extra": {
 "commit_hash": "211ef8db83612802aeea151a0e04badfe287bcb9",
 "size": 731202,
 "url": "https://api.github.com/repos/presqt-test-user/NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",
 "html_url": "https://github.com/presqt-test-user/NewProject/blob/master/funnyfunnyimages/Screen_Shot.png",
 "git_url": "https://api.github.com/repos/presqt-test-user/NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",
 "download_url": "https://raw.githubusercontent.com/presqt-test-user/NewProject/master/funnyfunnyimages/Screen_Shot.png",
 "type": "file",
 "_links": {
 "self": "https://api.github.com/repos/presqt-test-user/NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",
 "git": "https://api.github.com/repos/presqt-test-user/NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",
 "html": "https://github.com/presqt-test-user/NewProject/blob/master/funnyfunnyimages/Screen_Shot.png"
 }
 }
 }
],
 "updated": [],
 "ignored": []
 }
 }
]
}

Now if we download from OSF the same project that was just transferred, then PresQT FTS Metadata would be:

{
 "allKeywords": ["cat", "dog", "feline", "doggo", "pupper"],
 "actions": [
 {
 "id": "bc5a48dc-d1f9-46bd-9137-48fe4843df77",
 "actionDateTime": "2019-11-12 15:45:45.309566+00:00",
 "actionType": "resource_transfer_in",
 "sourceTargetName": "github",
 "sourceUsername": "github_username",
 "destinationTargetName": "osf",
 "destinationUsername": "osf_username",
 "keywords": {
 "sourceKeywordsAdded": ["cat", "dog"],
 "sourceKeywordsEnhanced": ["feline", "doggo"],
 "ontologies": [
 {
 "keywords": [
 "doggo",
 "pupper"
],
 "ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
 "ontology_id": "CHEBI_153377",
 "categories": [
 "canine"
]
 },
 {
 "keywords": [
 "feline"
],
 "ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
 "ontology_id": "CHEBI_153377",
 "categories": [
 "felines"
]
 },
],
 "enhancer": "scigraph"
 },
 "files": {
 "created": [
 {
 "destinationPath": "NewProject/osfstorage/funnyfunnyimages/Screen_Shot.png",
 "destinationHashes": {
 "md5": "3505a89c3cbb82873a107ae41f3997c3"
 },
 "failedFixityInfo": [
 {
 "NewGeneratedHash": "3505a89c3cbb82873a107ae41f3997c3",
 "algorithmUsed": "md5",
 "reasonFixityFailed": "Either a Source Hash was not provided or the source hash algorithm is not supported."
 }
],
 "title": "Screen_Shot.png",
 "sourceHashes": {},
 "sourcePath": "/NewProject/funnyfunnyimages/Screen_Shot",
 "extra": {
 "commit_hash": "211ef8db83612802aeea151a0e04badfe287bcb9",
 "size": 731202,
 "url": "https://api.github.com/repos/presqt-test-user/NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",
 "html_url": "https://github.com/presqt-test-user/NewProject/blob/master/funnyfunnyimages/Screen_Shot.png",
 "git_url": "https://api.github.com/repos/presqt-test-user/NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",
 "download_url": "https://raw.githubusercontent.com/presqt-test-user/NewProject/master/funnyfunnyimages/Screen_Shot.png",
 "type": "file",
 "_links": {
 "self": "https://api.github.com/repos/presqt-test-user/NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",
 "git": "https://api.github.com/repos/presqt-test-user/NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",
 "html": "https://github.com/presqt-test-user/NewProject/blob/master/funnyfunnyimages/Screen_Shot.png"
 }
 }
 }
],
 "updated": [],
 "ignored": []
 }
 },
 {
 "id": "bc5a48dc-d1f9-46bd-9137-48fe4843df77",
 "actionDateTime": "2019-11-12 15:45:45.309566+00:00",
 "actionType": "resource_download",
 "sourceTargetName": "osf",
 "sourceUsername": "osf_username",
 "destinationTargetName": "Local Machine",
 "destinationUsername": null,
 "keywords": {},
 "files": {
 "created": [
 {
 "destinationPath": "/NewProject/osfstorage/funnyfunnyimages/Screen_Shot.png",
 "destinationHashes": {},
 "failedFixityInfo": [],
 "title": "Screen_Shot.png",
 "sourceHashes": {
 "sha256": "6d33275234b28d77348e4e1049f58b95a485a7a441684a9eb9175d01c7f141ea",
 "md5": "3505a89c3cbb82873a107ae41f3997c3"
 },
 "sourcePath": "/NewProject/osfstorage/funnyfunnyimages/Screen_Shot.png",
 "extra": {
 "id": "5dcc215848a1d9000cd0a3fb",
 "parent_project_id": "2bw9j",
 "endpoint": "https://api.osf.io/v2/files/5dcc215848a1d9000cd0a3fb/",
 "download_url": "https://files.osf.io/v2/resources/2bw9j/providers/osfstorage/5dcc215848a1d9000cd0a3fb",
 "upload_url": "https://files.osf.io/v2/resources/2bw9j/providers/osfstorage/5dcc215848a1d9000cd0a3fb",
 "delete_url": "https://files.osf.io/v2/resources/2bw9j/providers/osfstorage/5dcc215848a1d9000cd0a3fb",
 "last_touched": null,
 "date_modified": "2019-11-13T15:29:29.043502Z",
 "current_version": 1,
 "date_created": "2019-11-13T15:29:29.043502Z",
 "provider": "osfstorage",
 "path": "/5dcc215848a1d9000cd0a3fb",
 "current_user_can_comment": true,
 "guid": null,
 "checkout": null,
 "tags": [],
 "size": 731202
 }
 }
],
 "updated": [],
 "ignored": []
 }
 }
]
}

Metadata Location When Downloading

The PresQT FTS Metadata file will be written to the highest level possible of the resource
being downloaded.

Metadata Location When Uploading or Transferring

The PresQT FTS Metadata file will be written to the highest level possible of the destination project.
Since this possible level may vary for any target, we leave it up to the target to handle this
when they integrate with Upload.

Existing Metadata

If a valid PresQT FTS Metadata file is found at the top level of the resource being affected by
the action then we will add a new action to this existing metadata file.

If an invalid PresQT FTS Metadata file is found at the top level of the resource being affected
by the action then we will rename the invalid metadata file to INVALID_PRESQT_FTS_METADATA.json and
then we will create a new valid metadata file with the current actions metadata.

Keyword Assignment

Keyword Enhancers

	SciGraph http://ec-scigraph.sdsc.edu:9000/scigraph/docs/

Keyword Difference Between Targets

Each target holds keywords in different attributes. Some may have keywords in multiple attributes.
The following table outlines the keyword attributes for each target.

	Targets

	Keyword Attributes

	OSF

	[Tags]

	Github

	[Topics]

	Gitlab

	[Tag List]

	CurateND

	[Subjects]

	Zenodo

	[Keywords]

	FigShare

	[Tags]

Keyword Assignment During Transfer

When transferring a resource you have the option of either manual or automatic keyword enhancement.
Manual enhancement will only add source keywords and the keywords provided in the request body.
Automatic will add all enhancements including any provided in the request body.
These can be set by setting presqt-keyword-action in the headers to either manual or automatic

Manual Keywords

If presqt-keyword-action is manual then PresQT will only add keywords found in the
source target and keywords given in the body of the request. This means you need to get the possible
enhancements before initiating a transfer.

Automatic Keywords

If presqt-keyword-action is automatic then PresQT will add keywords found in the source,
keywords given in the request body, and any keyword enhancements found during the transfer process.
The following steps occur during the transfer in this case:

	Fetch all source keywords both in the target and in the FTS metadata file for the transferred resource.

	Get enhancements with the given enhancer (Defaults to SciGraph for now).

	Upload keyword enhancements to the Source Target and Destination Target.

	Add the keyword enhancements to the FTS Metadata file that gets written to the Destination Target during the transfer.

	Add the keyword enhancements to the FTS Metadata file that gets written to the Source Target during the transfer.

[image: _images/keyword_enhancement_1.png]

Image 2: Lifecycle of Keyword Enhancement during a transfer

[image: _images/keyword_enhancement_2.png]

Image 3: Practical Example of Keyword Enhancement during a transfer

Keyword Assignment Service Endpoint

Keyword Enhancement can be done without transferring.

	Use the Keyword Enhancement GET endpoint to fetch the keywords from the resource.

	Pass the keywords you want to enhance to the Keyword Enhancement POST endpoint.

	Enhanced keywords will get uploaded to the target and a new action will get written to the FTS metadata file.

[image: _images/keyword_enhancement_3.png]

Image 4: Lifecycle of a Keyword Enhancement Service

[image: _images/keyword_enhancement_4.png]

Image 5: Practical Example of a Keywords Enhancement Service

Preservation Quality

IN PROGRESS

Services

A service is a unique target integration that is not accessible via the normal API endpoints.
Typically, the point of a service is to take action on a resource (emulate, annotate, etc.)
rather than simply storing it.

EaaSI (Emulation-as-a-Service Infrastructure) Service

PresQT takes advantage of EaaSI’s [https://www.softwarepreservationnetwork.org/eaasi//]
ability to interpret resources and suggest a relevant emulation environment. Our PresQT API calls
use EaaSI’s Proposal API [https://openslx.gitlab.io/eaas-api-docs/environment-proposer/environment-proposer/resource_EnvironmentProposerAPI.html] to send resources to EaaSI.

Step 1: Download the Resource

PresQT is able to use the existing
download endpoint [https://presqt.readthedocs.io/en/latest/api_endpoints.html#resource-download-endpoints]
to fetch a Target’s resource to a PresQT server.

Step 2: Start a proposal task on an EaaSI server

Then, using the ticket number created from the
PresQT download task, a
POST request [https://presqt.readthedocs.io/en/latest/service_endpoints.html#submit-eaasi-proposal]
can be made to PresQT to send EaaSI a url where the downloaded resource can be fetched.
During this POST request we write a one time use token to the downloaded resource’s process_info.json file.
The URL we send to EaaSI to fetch the PresQT resource has a query parameter with this token.
This EaaSI download endpoint [https://presqt.readthedocs.io/en/latest/service_endpoints.html#eaasi-download] is for EaaSI use only.

Step 3: Get proposal status from EaaSI

We then have a GET endpoint [https://presqt.readthedocs.io/en/latest/service_endpoints.html#get-eaasi-proposal] that
makes a request to EaaSI to find the progress of the Proposal Task. If the task is complete then we
return the url for the suggested emulation environment. Otherwise, we return a 202 status and let the
user know the proposal task is still in progress.

[image: _images/EaaSI_Integration.png]

Image 1: Workflow of getting an EaaSI Emulation Environment of a given resource

FAIR Evaluator Service

PresQT takes advantage of FAIRshare’s [https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/#%2F!/]
prebuilt maturity indicator tests. Our PresQT API calls use an approved collection of tests [https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/collections/16/] identified by the
PI’s and community.

FAIRshake Assessment Service

PresQT takes advantage of FAIRshake’s [https://fairshake.cloud//] manual assessment functionality
to allow users to assess the FAIRness of their research projects.

Service Endpoints

Service Endpoints

Service Collection

	
GET /api_v1/services/

	Retrieve details of all Services.

Example request:

GET /api_v1/services/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "name": "eaasi",
 "readable_name": "EaaSI",
 "links": [
 {
 "name": "Detail",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/services/eaasi/",
 "method": "GET"
 }
]
 }
]

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Services successfully retrieved

Service Details

	
GET /api_v1/services/(str: service_name)/

	Retrieve details of a single Service.

Example request:

GET /api_v1/services/eaasi/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "name": "eaasi",
 "readable_name": "EaaSI",
 "links": [
 {
 "name": "Proposals",
 "link": "https://presqt-prod.crc.nd.edu/api_v1/services/eaasi/proposals/",
 "method": "POST"
 }
]
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Service successfully retrieved

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Service name

Keyword Enhancement

Get Keyword Enhancements From A List Of Keywords

	
GET /api_v1/services/presqt/keyword_enhancement/

	Take a list of keywords and run them through the keyword enhancement service.
The returned payload will contain both the new keywords added and the final full list of
keywords.

There are separate endpoints for keyword enhancements through Targets.
See the API Endpoint documentation to learn more.

Example request:

POST /api_v1/services/presqt/keyword_enhancement/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "keywords": ["cat", "water"]
 }

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "keywords_added": [
 "feline",
 "aqua",
 "dihydrogen oxide",
 "DISORDERED SOLVENT",
 "EGG",
 "Electrostatic Gravity Gradiometer",
 "oxidane",
 "OXYGEN ATOM",
 "Wasser",
 "Water"
],
 "final_keywords": [
 "feline",
 "aqua",
 "dihydrogen oxide",
 "DISORDERED SOLVENT",
 "EGG",
 "eggs",
 "Electrostatic Gravity Gradiometer",
 "oxidane",
 "OXYGEN ATOM",
 "Wasser",
 "water",
 "Water"
]
}

	JSON Parameters

	
	keywords (array) – An array of the keywords to upload

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Keywords successfully uploaded

EaaSI Endpoints

Submit EaaSI Proposal

	
POST /api_v1/services/eaasi/proposals/

	Send a file from a PresQT server to start a proposal task on an EaaSI server.

Example request:

POST /api_v1/services/eaasi/proposals/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "ticket_number":"39e56297-04cc-440a-b73e-9788b220f12b"
 }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": "19",
 "message": "Proposal task was submitted."
 "proposal_link": "https://presqt-prod.crc.nd.edu/api_v1/services/eaasi/1/"
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Proposal successfully started.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘presqt-source-token’ missing in request headers

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – A download does not exist for this user on the server.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid ticket number

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – A resource_download does not exist for this user on the server.

Get EaaSI Proposal

	
GET /api_v1/services/eaasi/proposals/(str: proposal_id)/

	Check on the state of the EaaSI Proposal Task on the EaaSI server.

Example request:

GET /api_v1/services/eaasi/proposals/12/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the proposal task is not finished:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
 "message": "Proposal task is still in progress."
}

Example response if the proposal task is finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "image_url": "https://eaasi-portal.emulation.cloud:443/blobstore/api/v1/blobs/imagebuilder-outputs/2ca330d6-23f7-4f0a-943a-e3984b29642c?access_token=default",
 "image_type": "cdrom",
 "environments": [],
 "suggested": {}
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Proposal Task has finished successfully

	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Proposal Task is being processed on the EaaSI server

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid Proposal ID

EaaSI Download

	
GET /api_v1/services/eaasi/(str: ticket_number)/?eaasi_token=(str: eaasi_token)

	EaaSI specific download endpoint that exposes a resource on a PresQT server to download.

Example request:

GET /api_v1/services/eeasi/download/39e56297-04cc-440a-b73e/?eaasi=E9luKQU9Ywe5j HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/zip

Payload is ZIP file

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – File successfully retrieved.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – eaasi_token not found as query parameter.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – eaasi_token does not match the ‘eaasi_token’ for this server process.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – File unavailable.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Invalid ticket number.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – A resource_download does not exist for this user on the server.

FAIRshare Endpoints

Get FAIRshare Tests

	
GET /api_v1/services/fairshare/evaluator/

	Get a list of tests from FAIRshare that are currently supported by PresQT.

Example request:

GET /api_v1/services/fairshare/evaluator/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "test_name": "FAIR Metrics Gen2- Unique Identifier "
 "description": "Metric to test if the metadata resource has a unique identifier. This is done by comparing the GUID to the patterns (by regexp) of known GUID schemas such as URLs and DOIs. Known schema are registered in FAIRSharing (https://fairsharing.org/standards/?q=&selected_facets=type_exact:identifier%20schema)",
 "test_id": 1
 },
 {
 "test_name": "FAIR Metrics Gen2 - Identifier Persistence "
 "description": "Metric to test if the unique identifier of the metadata resource is likely to be persistent. Known schema are registered in FAIRSharing (https://fairsharing.org/standards/?q=&selected_facets=type_exact:identifier%20schema). For URLs that don't follow a schema in FAIRSharing we test known URL persistence schemas (purl, oclc, fdlp, purlz, w3id, ark).",
 "test_id": 2
 }...
]

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Tests returned successfully

POST FAIRshare Evaluator

	
POST /api_v1/services/fairshare/evaluator/

	Submit a FAIRshare Evaluation request with a doi and list of test ids.

Example request:

POST /api_v1/services/fairshare/evaluator/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "resource_id":"10.17605/OSF.IO/EGGS12",
 "tests": [1, 2]
 }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "metric_link": "https://w3id.org/FAIR_Evaluator/metrics/1",
 "test_name": "FAIR Metrics Gen2- Unique Identifier ",
 "description": "Metric to test if the metadata resource has a unique identifier. This is done by comparing the GUID to the patterns (by regexp) of known GUID schemas such as URLs and DOIs. Known schema are registered in FAIRSharing (https://fairsharing.org/standards/?q=&selected_facets=type_exact:identifier%20schema)",
 "successes": [
 "Found an identifier of type 'doi'"
],
 "failures": [],
 "warnings": []
 },
 {
 "metric_link": "https://w3id.org/FAIR_Evaluator/metrics/2",
 "test_name": "FAIR Metrics Gen2 - Identifier Persistence ",
 "description": "Metric to test if the unique identifier of the metadata resource is likely to be persistent. Known schema are registered in FAIRSharing (https://fairsharing.org/standards/?q=&selected_facets=type_exact:identifier%20schema). For URLs that don't follow a schema in FAIRSharing we test known URL persistence schemas (purl, oclc, fdlp, purlz, w3id, ark).",
 "successes": [
 "The GUID of the metadata is a doi, which is known to be persistent."
],
 "failures": [],
 "warnings": []
 }
]

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Evaluation completed successfully.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘resource_id’ missing in the request body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘tests’ missing in the request body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘tests’ must be in list format.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – At least one test is required. Options are: […….]

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘eggs’ not a valid test name. Options are: […….]

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – FAIRshare returned a <status_code> error trying to process the request

FAIRshake Endpoints

Get FAIRshake Rubrics

	
GET /api_v1/services/fairshake/rubric/{str: rubric_id}/

	Get a list of merics from FAIRshake that are associated with the rubric id.

Example request:

GET /api_v1/services/fairshake/rubric/9/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "metrics": {
 "30": "The structure of the repository permits efficient discovery of data and metadata by end users.",
 "31": "The repository uses a standardized protocol to permit access by users.",
 "32": "The repository provides contact information for staff to enable users with questions or suggestions to interact with repository experts.",
 "33": "Tools that can be used to analyze each dataset are listed on the corresponding dataset pages.",
 "34": "The repository maintains licenses to manage data access and use.",
 "35": "The repository hosts data and metadata according to a set of defined criteria to ensure that the resources provided are consistent with the intent of the repository.",
 "36": "The repository provides documentation for each resource to permit its complete and accurate citation.",
 "37": "A description of the methods used to acquire the data is provided.",
 "38": "Version information is provided for each resource, where available."
 },
 "answer_options": {
 "0.0": "no",
 "0.25": "nobut",
 "0.5": "maybe",
 "0.75": "yesbut",
 "1.0": "yes"
 }
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Rubric returned successfully

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘egg’ is not a valid rubric id. Choices are: [‘7’, ‘8’, ‘9’]

POST FAIRshake Assessment

	
POST /api_v1/services/fairshake/rubric/{str: rubric_id}/

	Submit a FAIRshake Assessment request for the given rubric.

Example request:

POST /api_v1/services/fairshake/rubric/9/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
 {
 "project_url": "https://github.com/ndlib/presqt",
 "project_title": "presqt",
 "rubric_answers": {
 "30": "0.0",
 "31": "0.5",
 "32": "0.0",
 "33": "1.0",
 "34": "1.0",
 "35": "1.0",
 "36": "0.5",
 "37": "0.0",
 "38": "0.0"
 }
 }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "digital_object_id": 166055,
 "rubric_responses": [
 {
 "metric": "The structure of the repository permits efficient discovery of data and metadata by end users.",
 "score": "0.0",
 "score_explanation": "no"
 }...
]
}

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Assessment completed successfully.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘eggs’ is not a valid rubric id. Options are: [‘7’, ‘8’, ‘9’]

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘project_url’ missing in POST body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘project_title’ missing in POST body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘rubric_answers’ missing in POST body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘rubric_answers’ must be an object with the metric id’s as the keys and answer values as the values.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Missing response for metric ‘30’. Required metrics are: [‘30’, ‘31’, ‘32’]

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘egg’ is not a valid answer. Options are: [‘0.0’, ‘0.25’, ‘0.5’, ‘0.75’, ‘1.0’]

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – ‘egg’ is not a valid metric. Required metrics are: [‘30’, ‘31’, ‘32’]

Resources

This page contains all relevant resources used during development

Links

	PresQT Website

	OSF Implementation Effort

	Github Code Repo

	Docker Hub Image

	Endpoint Videos

	EaaSI Website

Example BagIts

BagIt Zip files

Since the upload endpoint requires a BagIt file in zip format here are some pre-made zip files to test the upload endpoint.

#1 Valid BagIt For Top Level Container w/Folder

#2 Valid BagIt For Top Level Container w/File

#3 Valid BagIt For Existing Container w/Single File

#4 Valid BagIt For Existing Container w/Folders & Files

#5 Invalid BagIt - Bad Manifest

#6 Invalid BagIt - Missing File

#7 Invalid BagIt - Unknown File

Example Workflow

The following are instructions on how the BagIt files above can be used to test the Upload endpoint:

	Make a POST to https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/ with BagIt #2 to see a new top level container created.

	Get the id of the new container and make a POST to https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/{resource_id}/ with BagIt #3 and with the ‘presqt-file-duplicate-action’ set to ‘ignore’ to see that the duplicate file is found and it’s contents are different but the file is updated.

	Make the same request as 2 but set the header ‘presqt-file-duplicate-action’ to ‘update’ to see the file updated.

	With the same container id make a POST request to https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/{resource_id}/ with BagIt #4 to see new files and folders added to the top level container.

	A POST request with BagIts 5-7 should return an error with nothing being uploaded.

QA Testing

Be sure to use the table of contents shown here to help navigate the instructions

[image: _images/QA_table_of_contents.png]

Click here to go to the testing site.

Demo Videos

Resources

We use the term resources for all content such as files, folders, projects, repos, items, etc.
It’s a catch all term since different websites name their content differently.

BagIt Tool

BagIt is a hierarchical filesystem format for storing and transferring digital content. PresQT
expects all files Uploaded to be zipped files in BagIt format. All downloads from PresQT come
in BagIt format as well. PresQT has a tool that will take a zipped file and return it to you
in BagIt format.

[image: _images/bagit_1.png]

Getting Authorization Tokens From Partner Sites

An Authorization Token is a unique identifier for a user requesting access to a service.

You can click here for instructions on how to get authorization tokens for each target.

Test Files

Here are some pre-made ZIP files that are in BagIt format that can be downloaded for use with PresQT.

presqt_Images.zip

presqt_MediaFiles.zip

presqt_TextFiles.zip

presqt_MixedFileTypes.zip

Known Bugs And Issues

	None as of this writing

Testing Instructions

Login To Targets From PresQT Demo UI

	Click on any Target icon under ‘Available Connections’ to pop open a login window.

[image: _images/login_step_1.png]

	Copy your Authorization Token for the target and press Connect

[image: _images/login_step_2.png]

	Resources associated with this token will appear on the left side.

	You can log out of the target and use a different token by pressing the button next to the resources header.

[image: _images/login_step_3.png]

5. To log into a different target simply repeat the process with a different target icon.
Once logged in you can switch between targets without having to provide your key.

Navigate and Searching The Resource Collection

Click here to go to the testing site.

Demo Videos

	After logging in you can navigate through your Resource Collection by clicking on the folders and files on the left.

	Clicking on a resource shows you the Resource Details on the right.

[image: _images/resource_collection_step_1.png]

3. Searching for public resources can be accomplished by selecting a search type and then pressing
the search icon. Public resources will be shown in the Resource Collection.
4. You can get back to your resources by pressing the refresh button.

[image: _images/resource_search_step_1.png]

Resource Details And Actions

1. Once you click on a resource you will get its details and buttons for each action available
for this resource. If the button is disabled then that action isn’t available for that resource.

[image: _images/resource_detail_step_1.png]

Resource Download

Click here to go to the testing site.

Demo Videos

1. To download a resource, first select the resource in the resource collection and then click
the Download action button in the details section.

[image: _images/download_step_1.png]

2. A modal will pop open providing you with transaction details. Click on the Download button
to start the download.

[image: _images/download_step_2.png]

3. Once the download is complete, the modal will provide you with details about how the download
process went.

[image: _images/download_step_3.png]

4. All downloads come in BagIt format. After the download is complete, unzip the file,
and you will see BagIt specification files. The data you requested to download will reside in
the data folder.

[image: _images/download_step_4.png]

Resource Upload

Click here to go to the testing site.

Demo Videos

Upload As A New Project

1. To upload to the target as a new project click the Create New Project button above the
resource collection.

[image: _images/upload_new_step_1.png]

2. A modal will pop open with an upload stepper. First select the file you’d like to upload.
The file must be a zip file who’s contents are in valid BagIt format.

[image: _images/upload_new_step_2.png]

	Next, the modal will display transaction details. Click Upload File to begin the upload process.

[image: _images/upload_new_step_3.png]

4. Once the upload is completed, the modal will provide you with details about how the upload
process went.

[image: _images/upload_new_step_4.png]

	You should also see the new uploaded resources appear in the resource collection.

Upload To An Existing Resource

1. To upload a resource, first select the resource in the resource collection and then click
the Upload action button in the details section.

[image: _images/upload_existing_step_1.png]

2. A modal will pop open with an upload stepper. First select the file you’d like to upload.
The file must be a zip file who’s contents are in valid BagIt format.

[image: _images/upload_existing_step_2.png]

3. Select how you want PresQT to handle any duplicate files it finds existing in the resource already.
Ignore will simply ignore the duplicate. Update will update the existing file with the new
uploaded file’s contents if they differ.

[image: _images/upload_existing_step_3.png]

	Next, the modal will display transaction details. Click Upload File to begin the upload process.

[image: _images/upload_existing_step_4.png]

5. Once the upload is completed, the modal will provide you with details about how the upload
process went.

[image: _images/upload_existing_step_5.png]

	You should also see the new uploaded resources appear in the resource collection.

Resource Transfer

Click here to go to the testing site.

Demo Videos

1. To transfer a resource to another target, first select the resource in the resource collection
and then click the Transfer button in the details section.

[image: _images/transfer_step_1.png]

	A modal will pop open with a transfer stepper. First, select the target you want to transfer to and press the Next button.

[image: _images/transfer_step_2.png]

	Input your token for the target you selected and press the Next button.

[image: _images/transfer_step_3.png]

4. Select the resource you want to transfer to. Don’t select any resource if you want to create
a new project. Press Next once you have made your selection.

[image: _images/transfer_step_4.png]

5. Select how you want PresQT to handle any duplicate files it finds existing in the resource already.
Ignore will simply ignore the duplicate. Update will update the existing file with the new
transferred file’s contents if they differ. Press the Next button once you’ve made your selection.
If you are making a new project then just press Next.

[image: _images/transfer_step_5.png]

	Next, the modal will display transaction details. Click Transfer File to begin the transfer process.

[image: _images/transfer_step_6.png]

7. Once the transfer is completed, the modal will provide you with details about how the transfer
process went.

[image: _images/transfer_step_7.png]

	You should also see the new transferred resources appear in the modal’s resource collection on the right.

Verifying Fixity

Fixity means the assurance that a digital file has remained unchanged. We determine file fixity
at every step along PresQT actions. More details about how PresQT handles fixity can be found
Here [https://presqt.readthedocs.io/en/latest/web_services.html#fixity].

Download

All downloads come with a file with detailed fixity information named fixity_info.json.
This file has an entry for every file involved in the download including each file’s checksum hash
at the Source Target and the hash calculated on the PresQT servers before sent to the browser
for download. To verify fixity remains, the user must calculate the files’ hashes on their local
machine and compare it to the hashes provided.

[image: _images/fixity_1.png]

Upload

Fixity during upload can be determined by inspecting the PRESQT_FTS_METADATA.json file
included with every upload. The attribute failedFixityInfo in this file will contain the
details if the file being uploaded has failed fixity.

[image: _images/fixity_2.png]

Transfer

Fixity during Transfer can be determined the same as Upload by inspecting the
PRESQT_FTS_METADATA.json file in the destination target.

Verifying Keyword Enhancement

See Here [https://presqt.readthedocs.io/en/latest/web_services.html#keyword-assignment] for
Keyword Enhancement details.

Keyword Enhancement As A Service

Keyword Enhancement as a service will write a new entry to the PRESQT_FTS_METADATA.json file
in the target. The action entry for keyword enhancement will say exactly which keywords were
added during this enhancement.

[image: _images/kw_1.png]

Keyword Enhancement During Transfer

Keyword Enhancement during a transfer will work similarly to Keyword Enhancement As A Service.
The difference is, for the destination target, the details of keyword enhancement will be located
in the transfer action entry instead of there being a new action entry for keyword enhancement.

Services

Click here to go to the testing site.

Demo Videos

Send a Proposal to EaaSI

1. To send a resource to EaaSI, first select the resource in the resource collection and then click
the Services action button in the details section. A drop down menu will appear from where you can select
EaaSI.

[image: _images/eaasi1.png]

2. A modal will pop open with an EaaSI stepper. First read the proposal and ensure the information is correct.
Once you have verified that this is what you’d like to do, press the Send button.

[image: _images/eaasi2.png]

3. A spinner will keep you informed of where in the process the request is, whether that be on the
PresQT server or on EaaSI’s.

[image: _images/eaasi3.png]

4. Once the upload is completed, the modal will provide you with details about how the process went.
There will also be a link for you to download the EaaSI created image.

[image: _images/eaasi4.png]

5. You can now open the image and run it however you please. Note: At this point in time, EaaSI’s
server is only returning cd-rom images for us during testing. The environments will be changed to accurately
take into account the files contained within the project as development continues.

[image: _images/eaasi5.png]

FAIRshare Evaluator Service

1. To initiate a FAIRshare evaluation, first select the resource in the resource collection and then click
the Services action button in the details section. A drop down menu will appear from where you can select
FAIRshare.

[image: _images/fairshare1.png]

2. A modal will pop open with a FAIRshare Evaluator Service stepper. First read the information and ensure the information is correct.
Once you have verified that this is what you’d like to do, select the tests you would like to run.

[image: _images/fairshare2.png]

3. Once you have selected the tests you’d like to run, you can choose to opt in for email notifications. When you are ready to run the
tests, press the Evaluate button.

[image: _images/fairshare3.png]

	A spinner will let you know that FAIRshare is processing the request. This may take awhile.

[image: _images/fairshare4.png]

	Once the process is complete, the results will be displayed in a drop down format to be reviewed.

[image: _images/fairshare5.png]

Other Integrations

Whole Tale Integration Proposal

Whole Tale (http://www.wholetale.org) is a platform for the creation, publication, and
re-execution of reproducible computational artifacts. Researchers can create new tales
that contain the code, data, workflow, and information about the computational
environment required to reproduce their analysis. Tales have basic metadata
including authors, title, keywords, description, and related identifiers (cited
derived from). Tales can be published to archival repositories including DataONE
network members and Zenodo.

Whole Tale is an integration partner for the PresQT project. As part of the
integration testing process, we explored two different use cases:

	Publish Tales from the WT platform to Zenodo and CurateND using the PresQT APIs

	Import an OSF project into WT using the PresQT APIs

BagIt Serialization

Tales are exported as BDBag-compatible bags with the following structure:

5e696df5f1c291f11ae9e1a8/
 README.md <-- Top-level readme (Tag file)
 bagit.txt
 bag-info.txt
 fetch.txt <-- Fetch file
 manifest-md5.txt
 manifest-sha256.txt
 run-local.sh <-- Script to run Tale locally (Tag file)
 tagmanifest-md5.txt
 tagmanifest-sha256.txt
 data/
 workspace/ <-- Tale workspace (user code, data, etc)
 environment.yml
 index.ipynb
 LICENSE <-- Tale license (Tag file)
 metadata/ <-- Tale metadata (Tag directory)
 environment.json
 manifest.json

The Tale bag is not currently compatible with PresQT, since PresQT currently
requires a single top-level folder in the payload representing the project. The
folder name is used as the dataset title when publishing to a target. Since the
Tale bag has a separate structure, one option is to double-bag. In the following
example, the above Tale is zipped and bagged:

presqt_bag/
 bagit.txt
 bag-info.txt
 manifest-md5.txt
 manifest-sha256.txt
 tagmanifest-md5.txt
 tagmanifest-sha256.txt
 data/
 Mapping Estimated Water Usage/
 5e7e10163632f4f0c84c51a8.zip

Publishing to Zenodo

The following figures illustrate the Tale as published to Zenodo using the WT
internal integration and using PresQT.

The first images illustrates a tale published to Zenodo using the WT internal
integration. The title, author, and description are all provided by the user
during tale creation. The WT platform adds a note with a custom link allowing
the user to import and re-execute the tale in the WT system. WT also supports
related identifiers, license, and keywork metadata. The tale is published as a
zipped bag.

[image: _images/zenodo_wt.png]

Tale published to Zenodo via WT

The second image illustrates a tale published to Zenodo using the PresQT
integration. The user is directed to the draft dataset creation form where they
are required to manually enter relevant metadata.

[image: _images/zenodo_presqt.png]

Tale published to Zenodo via PresQT

Metadata Support

To support our current Zenodo integration using the PresQT system would require
the ability to specify additional metadata during dataset creation. We use
the following fields:

	Title

	Creator/Authors (first name, last name, ORCID)

	Publication date/date

	Description

	Subject/keywords

	Rights/license

	Related identifiers (Cites, Derived From)

	References

	Notes

The notes field is important as it provides a way for us to embed a link in the
record that allows users to easily re-import and run the published tale.

For more information, see https://github.com/whole-tale/serialization-format/

Whole Tale Integration Implementation

An ‘extra_metadata’ field has been added to the PRESQT_FTS_METADATA.json. To get these extra
metadata fields to the new resource being created, the uploaded resources must have a
PRESQT_FTS_METADATA.json file at the highest level.

The following is an example:

{
 "allKeywords": [],
 "actions": [],
 "extra_metadata": {
 "title": "str",
 "creators": [
 {
 "first_name": "Example",
 "last_name": "User",
 "ORCID": "0931234123"
 }
],
 "publication_date": "2021-02-19",
 "description": "This is it.",
 "

 s": [],
 "license": "MIT",
 "related_identifiers": [],
 "references": "Nothing here.",
 "notes": "Nope."
 }
}

Under Development

 HTTP Routing Table

 /api_v1

 		 	

 		
 /api_v1	

 	
 	
 GET /api_v1/job_status/download.json/	

 	
 	
 GET /api_v1/job_status/download.zip/	

 	
 	
 GET /api_v1/job_status/transfer/	

 	
 	
 GET /api_v1/job_status/upload/	

 	
 	
 GET /api_v1/services/	

 	
 	
 GET /api_v1/services/(str: service_name)/	

 	
 	
 GET /api_v1/services/eaasi/(str: ticket_number)/?eaasi_token=(str: eaasi_token)	

 	
 	
 GET /api_v1/services/eaasi/proposals/(str: proposal_id)/	

 	
 	
 GET /api_v1/services/fairshake/rubric/{str: rubric_id}/	

 	
 	
 GET /api_v1/services/fairshare/evaluator/	

 	
 	
 GET /api_v1/services/presqt/keyword_enhancement/	

 	
 	
 GET /api_v1/targets/	

 	
 	
 GET /api_v1/targets/(str: target_name)/	

 	
 	
 GET /api_v1/targets/(str: target_name)/resources/	

 	
 	
 GET /api_v1/targets/(str: target_name)/resources/(str: resource_id).json/	

 	
 	
 GET /api_v1/targets/(str: target_name)/resources/(str: resource_id).zip/	

 	
 	
 GET /api_v1/targets/(str: target_name)/resources/(str: resource_id)/keywords/	

 	
 	
 POST /api_v1/services/eaasi/proposals/	

 	
 	
 POST /api_v1/services/fairshake/rubric/{str: rubric_id}/	

 	
 	
 POST /api_v1/services/fairshare/evaluator/	

 	
 	
 POST /api_v1/targets/(str: target_name)/resources/	

 	
 	
 POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/	

 	
 	
 POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/keywords/	

 	
 	
 PATCH /api_v1/job_status/transfer/	

 	
 	
 PATCH /api_v1/job_status/upload/	

Index

Code Documentation

Target Endpoints

Target Details

Target JSON Values

JSON Validation

We are using the JSON Schema library (https://json-schema.org/) to validated the Target JSON.
Defining a JSON Schema for the Target JSON allows us to declare how the Target JSON should be structured.
JSON Schema has a validation function where we can pass in a schema and JSON and it will return if
the JSON is valid or not. The schema definition is located in /presqt/json_schemas/target_schema.json.

Validation Calls

A management command has been written that will do Target JSON validation. It can be run manually by running:

$ python manage.py validate_target_json

This same management is called when docker-compose up is run. If the validation fails then it does
not allow the docker containers to be spun up.

Target API Endpoints

PUT LINK HERE WHEN READY

Resources Endpoints

Resource Collection Endpoint

Resource Detail Endpoint

Resource API Endpoints

PLACE LINK HERE WHEN READY

Download Endpoints

To handle server timeouts, PresQT spawns any resource download off into a separate memory thread
from the request memory. It creates a ticket number for a second endpoint to use to check in on the
process. The full process can be seen in Image 1. Details of each process can be found below.

[image: _images/download_process1.png]

Image 1: Full resource download process

Request Memory Process

The /targets/<target_id>/resources/<resource_id>.zip/ GET endpoint prepares the disk for resource
downloading by creating a ticket number (UUID) and writing a directory of the same name,
mediafiles/downloads/<ticket_number>. In that directory, it creates a process_info.json file which
will be the file that keeps track of the download process progress:

[image: _images/download_process2.png]

Image 2: Initial state of process_info.json

The process_info.json file keeps track of various process data but its main use in this process is
the ‘status’ key. It starts with a value of ‘in_progress’. This is how we know the server is still
processing the download request. So at this point we have a directory that looks like this:

	
	mediafiles
	
	
	downloads
	
	
	<ticket_number>
	
	process_info.json

We then spawn the download process off into a different memory thread so it can be completed without
a timeout sent back through the request. The spawned off function is _resource_download(). It then
returns a 200 response with the ticket number in the payload back to the front end. The full request
memory flow can be found below in Image 3.

[image: _images/download_process3.png]

Image 3: Resource download preparation in request memory

Server Memory Process

We now have the _resource_download() function running separately on the server. This function will
go to the appropriate target download function and fetch the resources we want to download by
fetching them from the target API. Once it has the resources it writes them into a new directory
named <target_name>_download_<resource_id> located inside of mediafiles/downloads/<ticket_number>.
While writing the resource we also run the resources through the fixity checker. Once all resources
are written and their fixities checked we write the fixity information to a file called fixity_info.json.
So if we are downloading from OSF, with a resource ID of 1234, and a ticket number of 9876 the
directory would like the following:

	
	mediafiles
	
	
	downloads
	
	process_info.json

	
	osf_download_1234
	
	file.jpg

	fixity_info.json

We then use BagIt to bag the data:

	
	mediafiles
	
	
	downloads
	
	process_info.json

	
	osf_download_1234
	
	
	data
	
	file.jpg

	fixity_info.json

	bag-info.txt

	bagit.txt

We then zip the data contents:

	
	mediafiles
	
	
	downloads
	
	osf_download_1234.zip

	process_info.json

	
	osf_download_1234
	
	
	data
	
	file.jpg

	fixity_info.json

	bag-info.txt

	bagit.txt

We then update the process_info.json file to reflect that the download process is complete and the
zip file is ready for download:

[image: _images/download_process4.png]

Image 4: Final state of process_info.json after a successful download

If there was a failure while we downloaded the files from the target then none of the files get
written to the disk and the process_info.json file gets updated to reflect the error. For instance,
if a bad resource id was given:

[image: _images/download_process5.png]

Image 5: Final state of process_info.json after a failed download

The full flow of the resource download in server memory can be found below in Image 6:

[image: _images/download_process6.png]

Image 6: Prepare resource download process in server memory

Download Job Check-In Endpoint

The /job_status/download/ GET endpoint will check in on the download process on the server to
see its status. It uses the token header to find the process_info.json file in the
corresponding folder, mediafiles/jobs/<hashed_token>/process_info.json.

	If the status is ‘in_progress’, it will return a 202 response along with a small payload.

	If the status is ‘failed’, it will return a 500 response along with the failure message and failure error code.

	If the status is ‘finished’, it will return a 200 response along with the zip file found in the same directory.

The full flow for this endpoint can be found on Image 7 below.

[image: _images/download_process7.png]

Image 7: Resource download process check in

Process Watchdog

When downloading, a watchdog function is also spawned away from request memory. The purpose of it is
to kill any processes that are taking too long. Right now, we say all downloaded processes have up
to an hour to finish before the watchdog will kill the process. If this time limit is hit then after
it kills the process the watchdog also updates the process_info.json file to the following:

[image: _images/download_process8.png]

Image 8: Final state of process_info.json if the watchdog kills the process

Download API Endpoints

PUT LINKS HERE WHEN READY

Upload Endpoints

Multiple Upload Endpoints

Resources can be uploaded via two endpoints. To upload a new top level resource they use the
/targets/<target_id>/resources/ POST endpoint. To upload the resource to an existing container they
use the /targets/<target_id>/resources/<resource_id>/ POST endpoint.

Overview

To handle server timeouts, PresQT spawns any resource upload off into a separate memory thread from
the request memory. It creates a ticket number for a second endpoint to use to check in on the process.
The full process can be seen in Image 1. Details of each process can be found below.

[image: _images/upload_process1.png]

Image 1: Full resource upload process

Request Memory Process

The /targets/<target_id>/resources/ and /targets/<target_id>/resources/<resource_id>/ endpoints
prepare the disk for resource uploading by creating a ticket number (UUID) and writing a directory
of the same name, mediafiles/uploads/<ticket_number>. It will then unzip the contents of the provided
zip file into that directory. If the bag fails to validate after it has been written to the disk, then
we will remove those files and attempt to write them again in case it was an IO error. If this write
process fails 3 times, then the server returns an error. Also in the ticket_number directory, it
creates a process_info.json file which will be the file that keeps track of the upload process progress:

[image: _images/upload_process2.png]

Image 2: Initial state of process_info.json

The process_info.json file keeps track of various process data but its main use in this process is
the ‘status’ key. It starts with a value of ‘in_progress’. This is how we know the server is still
processing the upload request. So at this point we have a directory that looks like this:

	
	mediafiles
	
	
	uploads
	
	
	<ticket_number>
	
	
	zip_file_bag
	
	
	data
	
	
	project_to_upload
	
	
	folder_to_upload
	
	file_to_upload.txt

	manifest-sha512.txt

	bagit.txt

	bag-info.txt

	process_info.json

We know fixity has remained while saving these resources to disk because the bag has validated so
now we need to make sure we have hashes using an algorithm that the Target will also use. If the
Target supports an algorithm used in the bag we simply get those hashes from the bag otherwise we
generate new hashes using a Target supported hashing algorithm. These hashes will be used to compare
against the hashes given to us by the Target after upload.

Now that we have the files saved to disk and their hashes, we spawn the upload process off into a
different memory thread so it can be completed without a timeout sent back through the request. The
spawned off function is _resource_upload(). It then returns a 200 response with the ticket number
in the payload back to the front end. The full request memory flow can be found below in Image 3.

[image: _images/upload_process3.png]

Image 3: Resource upload in request memory thread

Server Memory Process

We now have the _resource_upload() function running separately on the server. This function will go
to the appropriate target upload function and upload the resources using the target API. If all
files are uploaded successfully, then the hashes brought back from the target are compared with the
hashes we calculated earlier. Any files that failed fixity are kept track of in the key ‘failed_fixity’
in process_info.json. Duplicate files that were ignored and updated are also kept track of in
process_info.json. The following are the possible states of process_info.json after uploading has
completed:

[image: _images/upload_process4.png]

Image 4: process_info.json state after successful upload

[image: _images/upload_process5.png]

Image 5: process_info.json state when fixity fails with ignored/updated duplicates

[image: _images/upload_process6.png]

Image 6: process_info.json state when upload fails

The full flow of the resource upload in server memory can be found below in Image 7:

[image: _images/upload_process7.png]

Image 7: Prepare resource upload process in server memory

Upload Job Check-In Endpoint

The /job_status/upload/ GET endpoint will check in on the upload process on the server to see
its status. It uses the token header to find the process_info.json file in the
corresponding folder, mediafiles/jobs/<hashed_token>/process_info.json.

	If the status is ‘in_progress’, it will return a 202 response along with a small payload.

	If the status is ‘failed’, it will return a 500 response along with the failure message and failure error code.

	If the status is ‘finished’, it will return a 200 response along with a small payload.

The full flow for this endpoint can be found on Image 8 below:

[image: _images/upload_process8.png]

Image 8: Resource download process check in

Process Watchdog

When uploading, a watchdog function is also spawned away from request memory. The purpose of it is
to kill any processes that are taking too long. Right now, we say all upload processes have up to an
hour to finish before the watchdog will kill the process. If this time limit is hit then after it
kills the process the watchdog also updates the process_info.json file to the following:

[image: _images/upload_process9.png]

Image 9: process_info.json state if the watchdog kills the process

Upload API Endpoints

ADD LINKS HERE

Asynchronous Requests

The Center for Research Computing has implemented asynchronous requests in its integration of OSF
with PresQT. They used the python library aiohttp (https://github.com/aio-libs/aiohttp) to accomplish
this.

Example - OSF Resource Collection

When navigating the OSF API for endpoints such as Resource Collection they found that a massive
amount of GET requests to OSF would occur. For instance, getting the resources for a fork of the
PresQT project (https://osf.io/d3jx7/) took roughly 1 minute and after implementing asynchronous
requests it now takes roughly 25 seconds.

Asynchronous requests allows us to group similar API requests together to be made at the same time
rather than one at a time. Because of the nature of APIs and needing to hit an endpoint to see where
to go further, not all requests could be grouped together so we devised a strategy to group as many
as we could. The following image is our solution. Every color is a grouping of asynchronous requests:

[image: _images/async_request_grouping.png]

Image 1: Asynchronous Request Grouping

Integration Management Command

To make the process of new target integration easier, there is a Django management command that can
be run to automate the integration process. It will update the necessary files and create directories
and functions for you.

python manage.py add_new_target will start the command. the command will ask a series of questions
about the new target and then create/update files while giving a log of what was done.

[image: _images/integration_management_command.png]

Example Screenshot of the integration command working

 _images/upload_existing_step_4.png
Upload Resource

° Select a file to upload. Note: The file must be a Zip file in Baglt format

° Select the action to occur when a duplicate resource is found

e Initiate Upload

The following actions will occur with this transaction:

V4 Upload to the OSF resource 'funnyfunnyimages'.

V4 Write or edit File Transfer Service Metadata file at the top level.

V4 Resources will be stored in OSF Storage by default.

UPLOAD FILE

BACK

o Results

_images/upload_existing_step_5.png
Upload Resource

° Select a file to upload. Note: The file must be a Zip file in Baglt format

° Select the action to occur when a duplicate resource is found

° Initiate Upload

|
o Results

@ Upload successful.

@ All files passed fixity checks

_images/upload_existing_step_2.png
Upload Resource

o Select a file to upload. Note: The file must be a Zip file in Baglt format

SELECT FILE @

NEXT

9 Select the action to occur when a duplicate resource is found

_images/upload_existing_step_3.png
Upload Resource

° Select a file to upload. Note: The file must be a Zip file in Baglt format

e Select the action to occur when a duplicate resource is found

@® Ignore

O Update

BACK NEXT

_images/upload_fixity.png
POST
Request

(—Save files to disk—um|

Disk

Upload to OSF—p-|

{Update process file—m

process_info.json

_images/upload_new_step_1.png
P reSQ About PresQT Submit Feedback

Preservation Quality Tools

OSF Resources 3 Test Project

Search OSF By Title

e Q c o DOWNLOAD UPLOAD TRANSFER OUT SERVICES
CREATE NEW PROJE!

[) TestProject Resource Details

[Sub Test Project Kind
container

=S .
() googledrive Kind Name
project

Id
cmn5z

(=S5
[osfstorage

Title
Test Project

Date Created
2019-05-13T14:15:48.271327

Date Modified
2019-11-26T15:34:43.495871

Hashes
md5: null
sha256: null

Extra

category: project

fork: false
current_user_is_contributor: true
preprint: false
current_user_permissions: ["admin”, "write", "
custom_citation: null

collection: false

public: false

subjects: [|

registration: false
current_user_can_comment: true
wiki_enabled: true

node_license: null

tags: [|

size: null

read" |

Available Connections | Development Partners

UNIVERSITY OF
NOTRE DAME werue

Museum...Librar

SERVICES

_images/EaaSI_Integration.png
Save file from OSF to PresQT Server

api_vlhargetsfosfiresources/1111.zip/| Download with ticket number 12345
GET Request l Disk

Send a proposal request to EaaS| by
sending them the url to PresQT's
“EaaS| download endpoint
api_vl/services/eaasi/download/<ticket_number>/2eaasi_token=333

api_vl/services/eaasi/proposals/ EaaSi POST Return 200
Body: {ticket_number: 12345} Request Retumns wiproposal_i
. Proposal
New Token: 333 ID: 999
Create a one time
token for EaaS|
and write it to
process_info.json
Make proposal task If Proposal finished return 200
request to Eaasl| w/emulator link
api_vl/services/eaasi/proposals/999/ EaaSi GET q4> EaaSl Re(urzno‘éoo or
Request If Proposal in progress return

202

_images/transfer_step_7.png
Transfer Resource: Test Project

GitHub Resources

° Select destination target
] .

I - funnyfunnyimages

° Input destination target token

° Select resource or select nothing to create a new project

° Select the action to occur when a duplicate resource is found

C] Test_Project
° Initiate transfer
_J funnyfunnyimages-PresQT1-
° Results - PrivateProject
() . .
Transfer successful. Fixity can't be determined because [] ProjectEight
@ OSF may not have provided a file checksum. See
ProjectEighteen
PRESQT_FTS_METADATA json for more details. [| Projecttig
(] ProjectEleven
The following files failed fixity checks:
_J ProjectFifteen
@ /Test Project/googledrive/Google
Images/IMG_4740.jpg % ProjectFive
/Test Project/osfstorage/Images o—
@ - ProjectFour

/23109241410_e302872cf3_o.jpg

_images/upload_existing_step_1.png
P reSQ About PresQT Submit Feedback

Preservation Quality Tools

OSF Resources 3 Test Project

Search OSF By Title

e Q c o DOWNLOAD UPLOAD TRANSFER OUT SERVICES
CREATE NEW PROJE!

|75 Test Project Resource Detalls

[Sub Test Project Kind
container

=S .
() googledrive Kind Name
project

Id
cmn5z

(=S5
[osfstorage

Title
Test Project

Date Created
2019-05-13T14:15:48.271327

Date Modified
2019-11-26T15:34:43.495871

Hashes
md5: null
sha256: null

Extra

category: project

fork: false
current_user_is_contributor: true
preprint: false
current_user_permissions: ["admin”, "write", "
custom_citation: null

collection: false

public: false

subjects: [|

registration: false
current_user_can_comment: true
wiki_enabled: true

node_license: null

tags: [|

size: null

read" |

Available Connections | Development Partners

UNIVERSITY OF
NOTRE DAME werue

Museum...Librar

SERVICES

_images/transfer_step_5.png
Transfer Resource: Test Project

GitHub Resources

° Select destination target

o .
I - funnyfunnyimages
° Input destination target token

° Select resource or select nothing to create a new project

o Select the action to occur when a duplicate resource is found

@® Ignore

O Update

BACK NEXT

O O O O O " O N O TR

_images/transfer_step_6.png
Transfer Resource: Test Project

GitHub Resources

° Select destination target

o .
I - funnyfunnyimages
° Input destination target token

° Select resource or select nothing to create a new project
° Select the action to occur when a duplicate resource is found

e Initiate transfer

The following actions will occur with this transaction:

Transfer OSF resource 'Test Project' to the
GitHub resource 'funnyfunnyimages'.

Write or edit File Transfer Service Metadata file
at the top level.

A Github does not provide checksums for files.

A OSF will only provide checksums for OSF
Storage files.

TRANSFER FILE
BACK START OVER

o Results

OoDoooooxo@@@dd

_images/QA_table_of_contents.png
@A PresQT

Architecture/Infrastructure
Development Environment Setup
Authentication/Authorization
User Notes

Developer Notes

Target Integration

API Endpoints

Web Services

Services

Service Endpoints

Resources

B QA Testing
Resources
Baglt Tool

Getting Authorization Tokens From
Partner Sites

Downloadable Bags

Known Bugs And Issues

Testing Instructions

Verifying Fixity

Verifying Keyword Enhancement

Services

Docs » QA Testing OE

QA Testing

Click here to go to the testing site.
Demo Videos

Resources

We use the term resources for all content such as files, folders, projects, repos, item:
catch all term since different websites name their content differently.

Baglt Tool

Baglt is a hierarchical filesystem format for storing and transferring digital content. Pr
all files Uploaded to be zipped files in Baglt format. All downloads from PresQT come
format as well. PresQT has a tool that will take a zipped file and return it to you in Bag

Resources

artners

ble Connections

nav.xhtml

 Table of Contents

 		
 Welcome to PresQT

 		
 Architecture/Infrastructure

 		
 Development Environments

 		
 QA/Production Deployments

 		
 Development Environment Setup

 		
 Prerequisites

 		
 Local Development Environment Setup

 		
 Cron Container

 		
 Authentication/Authorization

 		
 Target Token Instructions

 		
 Open Science Framework

 		
 CurateND

 		
 GitHub

 		
 Zenodo

 		
 GitLab

 		
 FigShare

 		
 User Notes

 		
 Transfer Details

 		
 Developer Notes

 		
 Testing

 		
 Docker Commands

 		
 Updating Documentation

 		
 GitHub Differences

 		
 Target Integration

 		
 Target Endpoints

 		
 Target Collection/Details

 		
 Resource Endpoints

 		
 Resource Collection

 		
 Resource Detail

 		
 Resource Download Endpoint

 		
 Resource Upload Endpoint

 		
 Resource Transfer Endpoint

 		
 Keyword Enhancement Endpoint

 		
 Suggest Keywords

 		
 Enhance Keywords

 		
 Error Handling

 		
 API Endpoints

 		
 Authentication

 		
 Duplicate File Handling

 		
 Searching Resource Collections

 		
 Search Filters

 		
 Paginating Resource Collections

 		
 Page Parameter

 		
 Target Endpoints

 		
 Target Collection

 		
 Target Details

 		
 Resource Endpoints

 		
 Resource Collection

 		
 Resource Detail

 		
 Resource Download Endpoints

 		
 Download Resource

 		
 Resource Download Job Status

 		
 Resource Upload Endpoints

 		
 Upload New Top Level Resource

 		
 Upload To Existing Resource

 		
 Resource Upload Job Status

 		
 Resource Transfer Endpoints

 		
 Transfer New Top Level Resource

 		
 Transfer To Existing Resource

 		
 Resource Transfer Job Status

 		
 Keyword Enhancement Endpoints

 		
 Get a Resource’s Keywords And Keyword Enhancements

 		
 Upload Keywords to a Resource

 		
 Web Services

 		
 Fixity

 		
 Tools

 		
 PresQT Supported Hash Algorithms

 		
 Resource Download Fixity

 		
 Resource Upload Fixity

 		
 Resource Transfer Fixity

 		
 File Transfer Service (FTS) Metadata

 		
 Metadata Location When Downloading

 		
 Metadata Location When Uploading or Transferring

 		
 Existing Metadata

 		
 Keyword Assignment

 		
 Keyword Enhancers

 		
 Keyword Difference Between Targets

 		
 Keyword Assignment During Transfer

 		
 Keyword Assignment Service Endpoint

 		
 Preservation Quality

 		
 Services

 		
 EaaSI (Emulation-as-a-Service Infrastructure) Service

 		
 Step 1: Download the Resource

 		
 Step 2: Start a proposal task on an EaaSI server

 		
 Step 3: Get proposal status from EaaSI

 		
 FAIR Evaluator Service

 		
 FAIRshake Assessment Service

 		
 Service Endpoints

 		
 Service Endpoints

 		
 Service Collection

 		
 Service Details

 		
 Keyword Enhancement

 		
 Get Keyword Enhancements From A List Of Keywords

 		
 EaaSI Endpoints

 		
 Submit EaaSI Proposal

 		
 Get EaaSI Proposal

 		
 EaaSI Download

 		
 FAIRshare Endpoints

 		
 Get FAIRshare Tests

 		
 POST FAIRshare Evaluator

 		
 FAIRshake Endpoints

 		
 Get FAIRshake Rubrics

 		
 POST FAIRshake Assessment

 		
 Resources

 		
 Links

 		
 Example BagIts

 		
 BagIt Zip files

 		
 Example Workflow

 		
 QA Testing

 		
 Resources

 		
 BagIt Tool

 		
 Getting Authorization Tokens From Partner Sites

 		
 Test Files

 		
 Known Bugs And Issues

 		
 Testing Instructions

 		
 Login To Targets From PresQT Demo UI

 		
 Navigate and Searching The Resource Collection

 		
 Resource Details And Actions

 		
 Resource Download

 		
 Resource Upload

 		
 Upload As A New Project

 		
 Upload To An Existing Resource

 		
 Resource Transfer

 		
 Verifying Fixity

 		
 Download

 		
 Upload

 		
 Transfer

 		
 Verifying Keyword Enhancement

 		
 Keyword Enhancement As A Service

 		
 Keyword Enhancement During Transfer

 		
 Services

 		
 Send a Proposal to EaaSI

 		
 FAIRshare Evaluator Service

 		
 Other Integrations

 		
 Whole Tale Integration Proposal

 		
 Whole Tale Integration Implementation

 		
 Under Development

_images/curate_nd_step_1.png
UNIVERSITY OF

NOTRE DAME

Username

o Please enter a username

Password

@ Please enter a password

Remember me

Need help signing in?

_images/curate_nd_step_2.png
My Works

e —— | Group Administration

My Account

Temporary Access Grants

API Access Tokens

Log Out

_images/async_request_grouping.png
Project 2

Subproject 1

Subproject 2

jul
e

e

After the first page of pagination
all further paginated pages are
called together.

_images/bagit_1.png
P reSQ I About PresQT Submit Feedback Baglt Tool Documentation

Preservation Quality Tools

Resources

Available Connections | Development Partners
.'. UNIVERSITY OF
.‘..‘ N O z NOTRE DAME

NSTIUTE o
Museum....Ltlbrary
SERVICES

_images/download_process1.png
Partner Response
200

PresQT Core Create ticket_number directory on disk Write process_info.json to ticket_number directory

ticket_number|

3 1
GET Request narge‘s/qarqeuj>/vesumc:s/<vesumce,m inl_|Resource g\/ﬁ"\f,lpjurmmo— -
presdi_source.token e | mediafiles/downloads/<ticket_number>/
7 |
| * Write, bag, zip files
| process_watchdog() to directory
Spawns process to download files from | I
target to disk on a memory thread | binary file.
separate from request memory | hashzg ! 2
path,
* Resource ID| ~N title
Token OSFDownloadResource() Yol
— Funetion - OSFAPI L—""" slresource_download()|3
resource_download() Y, Update
process_info.json|
1
N File, Hashes o .
CurateDownloadResource() HubZero API O Fixity Detalls
Function
J
fixity_checker()
TargetDownloadResource() \
L Funetion —(TargetAPI
J
status=in_progress Response 202
Open
downloads/<tick ResourceDownload()| “mediafiles/downloads/<ticket_number>fprocess_infojson” | process_infojson stawsiished | HRSsbonse
GET Request s oken View > w
status=failed
Response 500

NS

_images/download_process2.png
user_token

datetime+5 days

_images/curate_nd_step_3.png
APl Access Token List

Create New Token

API Access Token

_images/curate_nd_step_4.png
API Access Token Issued By For User

o [I

_images/download_process3.png
GET Request

farges/strget b resourcesisresource iz |

Presq_source.token

Response
200

Create ticket_number directory on disk

Write process_info.json to ticket_number directory

ticket_number

Resource.get_zip_format()
View

mediafiles/downloads/<ticket_number>/

2T

Spawns process to download files from |
target to disk on a memory thread |
separate from request memory *

1
|
¥

process_watchdog()

resource_download()

user_token

datetime+5

medafiles/downloads/<ticket_number>/process_info.json

_images/download_process4.png
user_token

datetime+5 days

_images/download_process5.png
user_token

datetime+5 days

_images/download_process8.png
user_token,

datetime+5 days

_images/download_step_1.png
P reSQ About PresQT Submit Feedback

Preservation Quality Tools

OSF Resources s

Search OSF By Title

Test Project
- ac e

UPLOAD TRANSFER OUT SERVICES
CREATE NEW PROJE!

|75 Test Project s Resource Details

] SubTest Project Kind
container

DOWNLOAD

== .
J googledrive Kind Name
project

Id
cmn5z

o
J osfstorage

Title
Test Project

Date Created
2019-05-13T14:15:48.271327

Date Modified
2019-11-26T15:34:43.495871

Hashes
md5: null
sha256: null

Extra

category: project

fork: false
current_user_is_contributor: true
preprint: false
current_user_permissions: ["admin”, "write", "
custom_citation: null

collection: false

public: false

subjects: [|

registration: false
current_user_can_comment: true
wiki_enabled: true

node_license: null

tags: [|

size: null

read" |

Available Connections | Development Partners

UNIVERSITY OF
NOTRE DAME wsTnyTe

Museum...Librar

SERVICES

_images/download_process6.png
resource_download()

Resource ID,
Token

OSFDownloadResource()
Function

CurateDownloadResource()
Function

—

TargetDownloadResource()
Function

—

HubZero API

Target API

mediafiles/downloads/<ticket_number>/|

Write, bag, zip files
binary_file, to directory
hashes, 2
path,

resource_download()

w

Update
process_info.json|

1

File, Hashes O Fixity Details

fixity_checker()

medafiles/downloads/<ticket_number>/process_info.json

datetime+5 days

_images/download_process7.png
GET Request

ResourceDownload()
View

mediafiles/do

Open
loads/<tickel_number>fprocess_info jsor

status=in_p

ogress

process_info,son

status=finished

—————————]

stalus=faled

L »

Response 202

HipResy
200

with Zip File

Response 500

NS

_images/download_step_4.png
. bag-info.txt
B bagit.txt
v il data
B fixity_info.json
B PRESQT_FTS_METADATA.json
v [Test Project
> [googledrive
> [osfstorage
» [Sub Test Project
. manifest-md5.txt
. manifest-shal.txt
. manifest-sha256.txt
. manifest-sha512.txt
B tagmanifest-md5.txt
. tagmanifest-shal.txt
B tagmanifest-sha256.txt
. tagmanifest-sha512.txt
“ osf_download_cmn5z.zip

_images/eaasi1.png
PresQT

Preservation Quality Tools

About PresQT Submit Feedback Baglt Tool Documentation

GitHub Resources

Search GitHub

v CUNCAN)

CREATE NEW PROJECT

90sTwitterBot

aal

abstractclock
atlrestaurantscraper
autotextwithtwilio
basickeylogger
bathroombuddy
BearApp
blockchaintutorial
C779
codingbat-python
djangoblog
djangogroceryapp
djangoweatherapp

docscanner

(0 (0 O O O O OF O 0 (0 (0 (0 (00 O O

SpotifySlackStatus

DOWNLOAD UPLOAD TRANSFER OUT EAASI

EAASI

. KEYWO NHANCEMENT
Resource Details

Kind
container

Kind Name
repo

Id
264449738

Title
SpotifySlackStatus

Date Created
2020-05-16T14:02:32Z

Date Modified
2020-06-20T16:51:45Z

Hashes

Extra
id: 264449738
node_id: MDEwOIJIcG9zaXRvenkyNjQONDk3Mzg=
name: SpotifySlackStatus
full_name: branks42/SpotifySlackStatus
private: false
owner: { "login": "branks42", "id": 28787415, "node_id": "MDQ6VXNIcjl4Nzg3NDE1", "avatar_url": "https://avatars0.githubusercontent.com/u/28787415?v=4", "gravatar_id": ", "url": "https://api.github.com/users/branks42",
"htmi_url": "https://github.com/branks42", "followers_url": "https://api.github.com/users/branks42/followers", "following_url": "https://api.github.com/users/branks42/following{/other_user}", "gists_url":
"https://api.github.com/users/branks42/gists{/gist_id}', "starred_url": "https://api.github.com/users/branks42/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/branks42/subscriptions",

"organizations_url": "https://api.github.com/users/branks42/orgs", "repos_url": "https://api.github.com/users/branks42/repos’, "events_url": "https://api.github.com/users/branks42/events{/privacy}",

"received_events_url": "https://api.github.com/users/branks42/received_events', "type": "User", "site_admin": false }
description: Update your Slack status based on the song you're currently listening to on Spotify
fork: false
url: https://api.github.com/repos/branks42/SpotifySlackStatus

created_at: 2020-05-

_images/download_step_2.png
° Submit Download

The following actions will occur with this transaction:

V4 Resource will be downloaded as a Baglt file in ZIP format.

V4 File Transfer Service Metadata file will be written to the downloaded resource's top level.

A OSF will only provide checksums for OSF Storage files.

DOWNLOAD

9 Results

_images/download_step_3.png
0 Submit Download

|
a Results

@ Download successful. Fixity can't be determined because OSF may not have provided a file checksum. See

PRESQT_FTS_METADATA json for more details.

The following files failed fixity checks:

/Test Project/googledrive/PresQT Swimlane Activity Diagram 03_21_19 (2).pdf
/Test Project/googledrive/module_responses.csv
/Test Project/googledrive/Google Images/IMG_4740.jpg

/Test Project/googledrive/Character Sheet - Alternative - Print Version.pdf

_images/eaasi3.png
Proposal task is being processed on the EaaSI server...

¢

_images/eaasi4.png
@ EaaSI has successfully created an emulation image. It can be downloaded by clicking here.

_images/eaasi2.png
o Submit Proposal

Send the contents of SpotifySlackStatus to EaaSI. They will prepare the contents and return an image that can be
run as an emulator.

SEND

Results

_images/fairshare2.png
FAIRshare Evaluator Service

o Submit FAIRshare Evaluator Request

Submit a FAIRshare Evaluator request for PresQT Data and Software Preservation Quality Tool Project with doi
10.17605/0SF.10/D3JX7. They will return the results of the tests you select to run below.

FAIRshare tests supported by PresQT

FAIR Metrics Gen2- Unique Identifier

Metric to test if the metadata resource has a unique identifier. This is done by comparing the GUID to the
patterns (by regexp) of known GUID schemas such as URLs and DOls. Known schema are registered in
FAIRSharing (https.//fairsharing.org/standards/?q=&selected_facets=type_exact:identifier%20schema)

FAIR Metrics Gen2 - Identifier Persistence

Metric to test if the unique identifier of the metadata resource is likely to be persistent. Known schema

are registered in FAIRSharing (https.//fairsharing.org/standards/?q=&
selected_facets=type_exact:identifier%20schema). For URLs that don't follow a schema in FAIRSharing
we test known URL persistence schemas (purl, oclc, fdlp, purlz, w3id, ark).

FAIR Metrics Gen2 - Structured Metadata

Tests whether a machine is able to find structured metadata. This could be (for example) RDFa,
embedded json, json-Id, or content-negotiated structured metadata such as RDF Turtle

FAIR Metrics Gen2 - Grounded Metadata

Tests whether a machine is able to find ‘grounded’ metadata. i.e. metadata terms that are in a resolvable
namespace, where resolution leads to a definition of the meaning of the term. Examples include JSON-
LD, embedded schema, or any form of RDF. This test currently excludes XML, even when terms are
namespaced. Future versions of this test may be more flexible.

FAIR Metrics Gen2 - Data Identifier Explicitly In Metadata

Metric to test if the metadata contains the unique identifier to the data. This is done by searching for a
variety of properties, including foaf:primaryTopic, schema:mainEntity, schema:distribution, sio:is-about,
and iao:is-about. schema codeRepository is used for software releases.

_images/fairshare3.png
FAIRshare Evaluator Service

added upon request by the community.

FAIR Metrics Gen2 - Metadata Persistence

Metric to test if the metadata contains a persistence policy, explicitly identified by a persistencePolicy
key (in hashed data) or a http.//www.w3.0rg/2000/10/swap/pim/doc#persistencePolicy predicate in
Linked Data.

FAIR Metrics Gen2 - Data Knowledge Representation Language (strong)

Maturity Indicator to test if the data uses a formal language broadly applicable for knowledge

representation. This particular test takes a broad view of what defines a ‘knowledge representation
language’, in this evaluation, a knowledge representation language is interpreted as one in which terms
are semantically-grounded in ontologies. Any form of ontologically-grounded linked data will pass this
test.

FAIR Metrics Gen2 - Metadata uses FAIR vocabularies (strong)

Maturity Indicator to test if the linked data metadata uses terms that resolve to linked (FAIR) data.

FAIR Metrics Gen2 - Metadata Includes License

Maturity Indicator to test if the metadata contains an explicit pointer to the license. This 'weak' test will

use a case-insensitive regular expression, and scan both key/value style metadata, as well as linked data
metadata. Tests: xhtml, dvia, dcterms, cc, data.gov.au, and Schema license predicates in linked data, and
validates the value of those properties.

DESELECT ALL

You can input your email below and we will notify you once this evaluation is complete. Inputing your email

address is not mandatory and we will not store this information on the server once the process has finished.
Email Address

@nd.edu

EVALUATE

e Evaluation Results

_images/eaasi5.png
o000 B CDROM
CDROM

fixity_info.json PRESQT_FTS_METADATA.js SpotifySlackStatus
on

_images/fairshare1.png
PresQT

Preservation Quality Tools

About PresQT

Submit Feedback

Baglt Tool

Documentation

OSF Resources s

Search OSF By Title

v presqt Qi cC

CREATE NEW PROJECT

(] Accepted Abstracts for PresQT Workshop

[] NewProject (PresQT2)

PresQT Data and Software Preservation Quality Tool

|]
D Project

googledrive
osfstorage
Implementation Kickoff Meeting Sept 17-18,2018
Partner Meeting January 28-29, 2019
Implementation Effort
Administrative and Technical Project Plans
Outreach Presentations
PresQT Sept 18,2017 Workshop
PresQT May 1-2, 2017 Workshop
NewProject (PresQT1)
NewProject-PresQT1-

PresQT: Recap and Today’s Goals

PresQT: Workshop Goals - High Level Design - Timeline
of the Project

PresQT - Implementation Ideas
PresQT Needs Assessment

presqt

JUOTTOUgoooooxo

PresQT Data and Software Preservation Quality Tool Project

DOWNLOAD UPLOAD TRANSFER OUT SERVICES ‘V

Resource Details

Kind
container

Id
d3jx7

Title
PresQT Data and Software Preservation Quality Tool Project

Date Modified
2019-06-12T16:27:35.910171

Extra

category: project

fork: false

current_user_is_contributor: false

preprint: false

current_user_permissions: ["read" |
custom_citation: null

collection: false

public: true

subjects: [|

registration: false

current_user_can_comment: true

wiki_enabled: true

node_license: { "copyright_holders": ["], "year": "2018" }
tags: ["data quality”, "IMLS", "software preservation"]
size: null

EAASI

KEYWORD ENHANCEMENT

FAIRSHARE
K

project

Doi
10.17605/0SF.I{}/D3JX7

Date Created
2016-05-31T00349:23.817000

Hashes
md5: null
sha256: null

_images/figshare1.png
Log in to figshare

Email address

Password

Forgot password?

New to figshare? Sign up

_images/fairshare4.png
° Submit FAIRshare Evaluator Request

e Evaluation Results

Evaluation task is being processed on the FAIRshare server, this may take several minutes...

O

_images/fairshare5.png
FAIRshare Evaluator Service

a Evaluation Results

A FAIR Metrics Gen2- Unique Identifier

@ Found an identifier of type 'doi’

v FAIR Metrics Gen2 - Identifier Persistence

v FAIR Metrics Gen2 - Structured Metadata

v FAIR Metrics Gen2 - Grounded Metadata

v FAIR Metrics Gen2 - Data Identifier Explicitly In Metadata

v FAIR Metrics Gen2- Metadata Identifier Explicitly In Metadata

v FAIR Metrics Gen2 - Searchable in major search engine

v FAIR Metrics Gen2 - Uses open free protocol for metadata retrieval
v FAIR Metrics Gen2 - Metadata Persistence

v FAIR Metrics Gen2 - Data Knowledge Representation Language (strong)

_images/figshare4.png
Create a new personal token

Personal tokens allow you to access our API without going
through the 3 legged oauth process. Tokens can be used for
many applications, including our desktop uploader. Add a
description to easily recognise associations made when you
return.

Description *

Cancel JEEVG]

_images/figshare5.png
Token created

Please copy and save this token as you won't have a chance to see it again
later.

_images/figshare2.png
‘“ﬁ%} f' g Sh a re Browse Upload My data
W'
Profile
Settings
Applications

_images/figshare3.png
Personal Tokens Create Personal Token

Create personal tokens that allow you to access your data via apps, integrations or our API.

PresQT delete
created 8 days ago.

_images/github_step_1.png
(@)

Signin to GitHub

Username or email address

Password Forgot password?

New to GitHub? Create an account.

_images/github_step_2.png
)sitories

restaShop
fers a fully sc

6k

Signed in as
presqt-test-user

@ Set status

Your profile

Your repositories
Your projects
Your stars

Your gists

Feature preview

Help

Sign out

_images/fixity_1.png
fixity_info.json X

WoONOOUAE WNE

It

{

M fixity_info.json

"hash_algorithm": "md5",

"'source_hash": "064d1f531a16c30d6f750ee2843dc066",

"presqt_hash": "064d1f531a16c30d6f750ee2843dc066",

"fixity": true,

"fixity details": "Source Hash and PresQT Calculated hash matched.
"title": "PRESQT_FTS_METADATA. json",

"path": "/funnyfunnyimages/osfstorage/PRESQT_FTS_METADATA. json"

"hash_algorithm": "md5",

"'source_hash": "9a59806af9a3d4bf8a9cdd5ff@d9fall",

"presqt_hash": "9a59806af9a3d4bf8a9cdd5ffed9fall",

"fixity": true,

"fixity details": "Source Hash and PresQT Calculated hash matched.
"title": "Screen Shot 2019-07-15 at 3.51.13 PM.png",

"path": "/funnyfunnyimages/osfstorage/Screen Shot 2019-07-15 at 3.

"hash_algorithm": "md5",

"'source_hash": "3505a89c3cbb82873a107ae41f3997c3",

"presqt_hash": '"3505a89c3cbb82873a107ae41f3997c3",

"fixity": true,

"fixity details": "Source Hash and PresQT Calculated hash matched.
"title": "Screen Shot 2019-07-15 at 3.26.49 PM.png",

"path": "/funnyfunnyimages/osfstorage/Screen Shot 2019-07-15 at 3.

51.13 PM.png"

26.49 PM.png"

_images/fixity_2.png
| [N N J R PRESQT_FTS_METADATA.json

PRESQT_FTS_METADATA.json @

1

2 "allEnhancedKeywords": [],

3 "actions": [

4 {

5 "id": "6cf34617-96d7-4361-80a7-a0514bcdd4bo",

6 "details": "Upload to OSF",

7 "actionDateTime": "2020-05-20 16:55:40.960282+00:00",

8 "actionType": "resource_upload",

9 "'sourceTargetName": "Local Machine",

10 "'sourceUsername": null,

11 "destinationTargetName": "osf",

12 "destinationUsername": "Prometheus",

13 "keywordEnhancements": {},

14 "files": {

15 "created": [

16 {

17 "destinationHashes": {

18 "'sha256": "6d33275234b28d77348e4e1049f58b95a485a7a441684a9eb9175d01c7f141ea"
19 h

20 "destinationPath": "/funnyfunnyimages/osfstorage/Screen Shot 2019-07-15 at 3.26.49 PM.png",
21 "failedFixityInfo": [],

22 "title": "Screen Shot 2019-07-15 at 3.26.49 PM.png",

23 "sourceHashes": {

24 "'sha256": "6d33275234b28d77348e4e1049f58b95a485a7a441684a9eb9175d01c7f141ea"
25 h

26 "sourcePath": "/funnyfunnyimages/Screen Shot 2019-07-15 at 3.26.49 PM.png",

27 "extra": {}

28 h

29 {

30 "destinationHashes": {

31 "'sha256": "8aeaa50cfd309009bd3d8648143ec15cbb96c@edc1575b4c5cee53bdc982d946"
32 +,

33 "destinationPath": "/funnyfunnyimages/osfstorage/Screen Shot 2019-07-15 at 3.51.13 PM.png",
34 "failedFixityInfo": [],

35 "title": "Screen Shot 2019-07-15 at 3.51.13 PM.png",

36 "sourceHashes": {

37 "'sha256": "8aeaa50cfd309009bd3d8648143ec15cbb96c@edc1575b4c5cee53bdc982d946"
38 +,

39 "sourcePath": "/funnyfunnyimages/Screen Shot 2019-07-15 at 3.51.13 PM.png",

40 "extra": {}

41 }

42 15

43 "updated": [I,

44 "ignored": []

45 }

46 }

_images/github_step_3.png
Personal settings
Profile

Account
Security
Security log
Emails
Notifications
Billing

SSH and GPG keys
Blocked users
Repositories
Organizations
Saved replies

Applications

Developer settings

_images/upload_process8.png
GET Request

s {
presat destination toks
presai_ie_dupicaie_

iber>

UploadJob()
View

Open
ediafiles/uploads/<ticket_number>/process_info_json

>

s=in_progress

process_info json

stalus=finished

—

staus=faled

L »

Response 202

HupResponse

200

Response 500

_images/github_step_4.png
GitHub Apps
OAuth Apps

Personal access tokens

_images/zenodo_presqt.png
wills8@ilinois edu

New upload

Instructions:) Upl

fields (marked with red st

) (1) Press ‘Save" to save your up)
Files v
Filename (2 files)

Mapping_Estimatec

er_Usage presqt.zip

md5:713860196067b076c6b6¢1c09136ecte ©

PRESQT_FTS_N
md517609136

ETADATAjson
04634001823432¢21

400

odification are not al

ed sfter you have published your

(minimum 1 filerequired, max 50

Communities @

Start typing a communi

name

Upload type

=] un]

Publication Poster

= 3

Presentation Dataset

sl

Image

Basic information

 Digital Object Identifier > g 10.1234/fo0 bar

6B per datase - contact us

d for editing later. (i) When ready,

size

15Mb

Kb

Tris is because a Digital Object Identifr (0O)) i r

H

Video/Audio

Dsave

v Publish

s "Publish 1o finalize and make your upload

@ Choose files
Progress Delete
v
v 8

stered with (7 DataCie for each upload

larger datasets)

recommended ¥

Q
requied v
<> = *
Software Lesson Other
o
requied v

_images/upload_process9.png
user_token,

datetime+5 days

_images/zenodo_step_2.png
& workwell-crc@nd.edu .

& Profile

&, Change password

U Security

% Linked accounts

U Applications

 Shared links
ntoac @ GitHub

® Log out

e N talban

_images/zenodo_step_1.png
Log in to account

© Log in with GitHub

@ Log in with ORCID

Email Address &

Password &

%) Loglin

New to Zenodo? Sign Up

_images/upload_process3.png
POST
Request

ticket_number

targets/<target_id>/resources/
targets/<target_id>/resources/<resource_id>/
presqt_destinaton_token,
presat_file_duplicate_action

Spawns process to upload files from
target to disk on a memory thread
separate from request memory

Response
200

Write presqt-file bag to ticket_number directory on disk

Write process_info.json to ticket_number directory

Resource.post()

Wl

2

i
[
[
[
[
[
|
¥

_upload_resource()

|
L]

mediafiles/uploads/<ticket_number>/

process_watchdog()

medafiles/uploads/<ticket_number>/process_info.json

_images/upload_process2.png
user_token

datetime+5 days

_images/upload_process5.png
user_token,

datetime+5 days

_images/upload_process4.png
user_token,

datetime+5 days

_images/upload_process7.png
data_directory, uploaded file_hashes,

hash_algorithm, files_ignored,
file_duplicate_action OSFUPL&:;riﬁsrs‘ource() OSF API files_updated

Curateug\oadResaurce() f——»(HubZero APl }/—————m=| upload_resource()
unction Update

process_info.json|

_upload_resource()

TargetUploadResource()

Function f——— Target API

_images/upload_process6.png
user_token,

datetime+5 days

_images/gitlab_step_1.png
Username or email

Password

") Remember me Forgot your password?

_images/gitlab_step_2.png
a D N B @

Team Prometheus
@Prometheus-Upload
Set status

Profile

Start a Gold trial #

Settings

Sign out

_images/github_step_6.png
Note

Demo

What's this token for?

Select scopes

Scopes define the access for personal tokens. Read more about OAuth scopes.

repo
v repo:status
v repo_deployment
v public_repo

7 repoinvite

(<]

write:packages

(<]

read:packages

(<]

delete:packages

<)

admin:org
v write:org

v read:org

admin:public_key
v write:public_key

v read:public_key

admin:repo_hook
v write:repo_hook

v read:repo_hook
admin:org_hook
gist

notifications

Full control of private repositories
Access commit status

Access deployment status
Access public repositories

Access repository invitations

Upload packages to github package registry
Download packages from github package registry
Delete packages from github package registry

Full control of orgs and teams, read and write org projects
Read and write org and team membership, read and write org projects

Read org and team membership, read org projects

Full control of user public keys
Write user public keys

Read user public keys

Full control of repository hooks
Write repository hooks

Read repository hooks
Full control of organization hooks
Create gists

Access notifications

_images/github_step_7.png
Make sure to copy your new personal access token now. You won’t be able to see it again!

v 178 Delete

_images/gitlab_step_5.png
Your New Personal Access Token

NB

Make sure you save it - you won't be able to access it again.

]

_images/integration_management_command.png
/Jusr/src/app # python manage.py add_new_target
Enter target name (use underscores not spaces): new_target

Enter hunan readable target name (format however): New Target

Does your target support the Resource Collection endpoint? (Y or N): bad input

Must input Y or N

Does your target support the Resource Collection endpoint? (Y or N): Y

Does your target support the Resource Detail endpoint? (Y or N): N

Does your target support the Resource Download endpoint? (Y or N): Y

Does your target support the Resource Upload endpoint? (Y or N): Y

Does your target support the Resource Transfer endpoint? (Y or N): Y

Enter your supported hash algorithns (coma separated list with no spaces): mds,sha256
Directory created: presqt/targets/new_target/

Directory created: presqt/targets/new_target/functions/

File created: presqt/targets/new_target/functions/

File created: presqt/targets/new_target/functions/fetch.py

File created: presqt/targets/new_target/functions/download.py

File created: presqt/targets/new_target/functions/upload.py

File presqt/api_vl/utilities/utils/function_router.py

File presqt/targets. json

_images/gitlab_step_3.png
% User Settings
K Yoo

@ Profile

8% Account

B Billing

88 Applications
[chat

@ Access Tokens

_images/gitlab_step_4.png
Name

Demo

Expires at

YYYY-MM-DD

Scopes

api
Grants complete read/write access to the API, including all groups and projects, the container
registry, and the package registry.

read_user
Grants read-only access to the authenticated user's profile through the /user API endpoint,
which includes username, public email, and full name. Also grants access to read-only API
endpoints under /users.

read_api
Grants read access to the API, including all groups and projects, the container registry, and
the package registry.

read_repository
Grants read-only access to repositories on private projects using Git-over-HTTP or the
Repository Files API.

write_repository
Grants read-write access to repositories on private projects using Git-over-HTTP (not using
the API).

read_registry
Grants read-only access to container registry images on private projects.

write_registry
Write Registry

Create personal access token

_images/keyword_enhancement_1.png
Transfer
Start

Write enhanced
source keywords
to Source Target

Get keywords from Return SciGraph
Source FTS Metadata File Source Keywords

A A

Get keywords
from Source Target

Send Source Keywords

To Enhancer Return

enhanced keywords

PRESQT_FTS_METADATA.JSON

‘Write ehanced source keywords to Source FTS Metadata File

Write enhanced
source keywords (o
Destination Target

OSF

‘Write enhanced
source keywords to
Destination FTS Metadata File

A4

PRESQT_FTS_METADATA.JSON

_images/upload_new_step_3.png
Upload Resource

° Select a file to upload. Note: The file must be a Zip file in Baglt format

e Initiate Upload
The following actions will occur with this transaction:

Ve Upload to OSF as a new project.

Ve Write or edit File Transfer Service Metadata file at the top level.

Ve Resources will be stored in OSF Storage by default.

UPLOAD FILE

BACK

a Results

_images/upload_new_step_2.png
Upload Resource

o Select a file to upload. Note: The file must be a Zip file in Baglt format

SELECT FILE @

NEXT

_images/upload_process1.png
Target

_—
PresQT Core
Response
200
Write presqt-file bag to ticket_number directory on disk Write process_info.json to ticket_number directory
ticket_number
4 1
targets/<target_id>resources/
POST targets/<target_id>/resources/<resource_id>/
R " e Resource.post() F———
equest presat_destination_token, | mediafiles/uploads/<ticket_number>/
presat_fle_dupicate_action

; . i

process_watchdog()

medafiles/uploads/<ticket_number>/process_info.json

Spawns process to upload files from

target to disk on a memory thread data_directory, uploir‘ied,ﬂle,hzshes‘
separate from request memory hash_algorithm, OSFUBIoadR [\‘esggnct‘)re L
file_duplicate_action pFouanc[iDeiource() OSF API iles_update

i
|
[
|
|
|
|
¥

Update
process_info.json

CurateUploadResource()

Function HubZero APl /————p=| _upload_resource()

_upload_resource()

TargetUploadResource()
Function

Target API

_images/upload_new_step_4.png
Upload Resource

° Select a file to upload. Note: The file must be a Zip file in Baglt format

° Initiate Upload

|
e Results

@ Upload successful.

@ All files passed fixity checks

_images/github_step_5.png
Personal access tokens Generate new token Revoke all

_images/login_step_1.png
PresQT

Preservation Quality Tools

About PresQT

Submit Feedback

Resources

Available Connections

SO Z
v

| Development Partners

UNIVERSITY OF
NOTRE DAME

b, INSTITUTE of
Museum....Ltlbrary
5 SERVICES

_images/login_step_2.png
In order to connect to OSF you will need to supply your API token. This will not be saved, so if you come back to this

website, you will need to provide your token again.

Insert API Token Here
. seeesscscsccsssnntccsssssscsssssssssssasssssssssssnsssssssssnns CONNECT

_images/keyword_enhancement_4.png
Target
Internal <
Keywords|

FTS
Metadataq
Keywords|

[cat, dog, egg]

——
Final Keyword

States

Github SciGraph
cat,
cat, feline, dog,
dog canine, egg,
scrambled
. [cat, feline,
cat el Cﬂa dog, canine,
dog, eline, dog, egg, scrambled]
canine, egg,
egy
scrambled

_images/kw_1.png
PRESQT_FTS_METADATA.json @

1 Aq
2 "allEnhancedKeywords": [
3 "DISORDERED SOLVENT",
4 "OXYGEN ATOM",
5 “water",
6 "Water",
7 "OXYGEN ATOM",
8 "DISORDERED SOLVENT",
9 "Water",
10 "water"
11 15
12 "actions": [
| 13
14 {
15 "id": "81d7780a-labf-4a6a-847f-0940e43c1f00",
16 "'details": "Enhance Keywords in OSF",
17 "actionDateTime": '"2020-05-20 17:37:57.101012+00:00",
18 "actionType": "keyword_enhancement",
19 "'sourceTargetName": "osf",
20 "destinationTargetName": "osf",
21 "'sourceUsername": "N/A",
22 "destinationUsername": "N/A",
23 "keywordEnhancements": {
24 "initialKeywords": [
25 "Water"
26 1,
27 "enhancedKeywords": [
28 "DISORDERED SOLVENT",
29 "OXYGEN ATOM",
30 “water",
31 "Water"
32 1,
33 "enhancer": "scigraph"
34 +,
35 "files": {
36 "create [1,
37 "updated": I[1,
38 "ignored": []
., 39
40 }
41 1

_images/osf_step_2.png
My Quick Files

My Projects

Search

Support

Dona

& MyProfie

@ osFsupport
£ Settings
® Logout

_images/osf_step_3.png
Settings

Profile information

Account settings
Configure add-on accounts
Notifications

Developer apps

Personal access tokens

_images/login_step_3.png
I reSQ I About PresQT Submit Feedback

Preservation Quality Tools

OSF Resources 3 g

Search OSF By Title

- CUNCAN)

CREATE NEW PROJECT

C] Test Project

Available Connections | Development Partners
(o) UNIVERSITY OF ;
:.: N O z NOT RESDAN([) E

Mﬁ;édfnwhip[qg

_images/osf_step_1.png
Sign in with your OSF account to continue

Sign in through institution ’

OR

’ Email -2}

’ Password -2}

Stay signed in Forgot your password?

Create an OSF account Back to OSF

_images/keyword_enhancement_2.png
Target
Internal <
Keywords|

FTS
Metadataq
Keywords|

[cat, dog, egg]

Github SciGraph OSF
cat, airplane, cat,
cat, feline, dog, feline, dog,
" d airplane
dog canine, egg, canine, egg,
scrambled scrambled
" [cat, feline, jet, airplane,
cat tel Caa dog, canine, cat,
dog, eline, dog, egg, scrambled] feline, dog, jet
canine, egg, .
egy canine, egg,
scrambled
scrambled

—
Final Keyword

States

_images/keyword_enhancement_3.png
Write enhanced
keywords
to Target

Enhancement
| P T——

Start Get keywords
from Target

SciGraph

Write ehanced keywords

Get keywords from to FTS Metadata File
FTS Metadata File

Send Keywords
To Enhancer

PRESQT_FTS_METADATA.JSON

_images/resource_search_step_1.png
OSF Resources

Search OSF By Title
(v egg Q Cb—Refresh

User Resources|

CREATE NEW PROJEC
Search

= Do ducks lay eggs? How people interpret generic
J assertions

| Data (EGG pilot)
f Egg Industry PRISM

Carteggio Ortaggi-Timpanaro

= Data and R codes for "Seasonality predicts egg size
J better than nesting habitat in precocial shorebird"

= Coursera - Niels Lettinga. IMDBArnold Schwarzenegger
J vs. Sylvester Stallon

Two-egg Fulmars

= Impact of Corporate Commitments to Source Cage-Free
J Eggs on Layer Hen Housing

(US Egg Production Data Set

) Fighting Fire with Fire: Mainstream Adoption of the
[~ Populist Political Style in the 2014 Europe Debates
" between Nick Clegg and Nigel Farage

Search Results

_images/transfer_step_1.png
PresQ

Preservation Quality Tools

OSF Resources s

Search OSF By Title

v aQac e

CREATE NEW PROJE
[)
|U Test Project #

J Sub Test Project

(— .
J googledrive

o
J osfstorage

Available Connections

Test Project

DOWNLOAD UPLOAD TRANSFER OUT SERVICES

Resource Details
Kind

container

Kind Name
project

Id
cmn5z

Title
Test Project

Date Created
2019-05-13T14:15:48.271327

Date Modified
2020-04-30T15:53:47.753824

Hashes
md5: null
sha256: null

Extra

category: project

fork: false

current_user_is_contributor: true

preprint: false

current_user_permissions: ["admin”, "write", "
custom_citation: null

collection: false

public: false

subjects: [|

registration: false
current_user_can_comment: true
wiki_enabled: true
node_license: null

tags: ["animals’, "eggs", "
size: null

read" |

water" |

| Development Partners

UNIVERSITY OF
NOTRE DAME wsTnyTe

Museum...Librar

SERVICES

About PresQT Submit Feedback

_images/resource_collection_step_1.png
I reSQ I About PresQT Submit Feedback

Preservation Quality Tools

OSF Resources g Images

Search OSF By Title

M Q c 0 DOWNLOAD UPLOAD TRANSFER OUT SERVICES ‘ v
CREATE NEW PROJECT

| —] . H
(] TestProject Resource Details
[.
Sub Test Project Kind
C]) container
[.
(| googledrive Kind Name
- folder
J osfstorage d
ﬁ 2017-01-27 PresQT Workshop Planning Meeting 50d9832cf244ec0021e5245
Items.docx Title
Images
ﬁ 2017-03-17 Agenda and Minutes.docx
Date Created
c— null
| C] Images
Date Modified
C] Docs null
[Hashes
(] Empty Folder md5: null
sha256: null
@ PRESQT_FTS_METADATA json
Extra
last_touched: null

materialized_path: /Images/
current_version: 1

provider: osfstorage

path: /5cd9832cf244ec0021e5f245/
current_user_can_comment: true

) guid: null
Resource Collection checkout: null
tags: [|
size: null
Available Connections | Development Partners

Mﬁ;édhn&ip[q(y

UNIVERSITY OF
NOTRE DAME

_images/resource_detail_step_1.png
PresQ

Preservation Quality Tools

About PresQT

Submit Feedback

OSF Resources s

Search OSF By Title

v aQac e

CREATE NEW PROJE!

| % Test Project

() Sub Test Project
(] N
() googledrive

(=S5
[osfstorage

Available Connections

Test Project

DOWNLOAD UPLOAD TRANSFER OUT SERVICES

Resource Details

Kind
container

Kind Name
project

Id
cmn5z

Title
Test Project

Date Created
2019-05-13T14:15:48.271327

Date Modified
2019-11-26T15:34:43.495871

Hashes
md5: null
sha256: null

Extra

category: project

fork: false
current_user_is_contributor: true
preprint: false
current_user_permissions: ["admin”, "write", "
custom_citation: null

collection: false

public: false

subjects: [|

registration: false
current_user_can_comment: true
wiki_enabled: true

node_license: null

tags: [|

size: null

read" |

| Development Partners

SERVICES

UNIVERSITY OF .
NOT RE DAME . miseum..Library

_images/transfer_step_4.png
Transfer Resource: Test Project

° GitHub Resources

Select destination target

o .
I - funnyfunnyimages
° Input destination target token

e Select resource or select nothing to create a new project

Selected Resource: funnyfunnyimages €@

BACK NEXT

funnyfunnyimages-PresQT1-

PrivateProject
o Select the action to occur when a duplicate resource is found

ProjectEight
e Initiate transfer ProjectEighteen

ProjectEleven
e Results
ProjectFifteen
ProjectFive
ProjectFour
ProjectFourteen
ProjectNine
ProjectNineteen
ProjectOne
ProjectSeven
ProjectSeventeen

ProjectSix

ProjectSixteen

O O O O O " O N O TR

_images/transfer_step_2.png
Transfer Resource: Test Project

Resources

o Select destination target

Ozw

9 Input destination target token
a Select resource or select nothing to create a new project

o Select the action to occur when a duplicate resource is found

_images/transfer_step_3.png
Transfer Resource: Test Project

Resources
(]

Select destination target

Input destination target token

Insert APl Token Here

eecscescescscsscccsscscsscccssccccscaans &

BACK NEXT

Select resource or select nothing to create a new project

Select the action to occur when a duplicate resource is found

Initiate transfer

Results

_static/file.png

_static/plus.png

_static/minus.png

_images/zenodo_step_4.png
New personal access token

Name
Demo

Name of personal access token.

Scopes
deposit:actions deposit:write user:email
Allow publishing of uploads. Allow upload (but not Allow access to email address

publishing). (read-only).
Scopes assign permissions to your personal access token. A personal access token works just like a normal OAuth access token for authentication against
the API.

_images/zenodo_step_3.png
Personal access tokens + New token

Following are personal tokens used to access the Zenodo API:

_images/zenodo_wt.png
wills8@illinois.edu

March 27,2020

© Wills, Craig; @ Kowalik, Kacper

Run this Tale on Whole Tale by clicking here.

Mapping Estimated Water Usage (local)

Demonstration of how to use Whole Tale to develop custom analysis and visualization for data published externally via
DataONE. See https://wholetale.readthedocs.io/en/stable/users_guide/quickstart.html for more information.

Preview

W 5¢7e10163632/4{0c84c5 128
o [IREADME.md
o [Ybag-info.ixt
o [Ybagit.txt
o Wdala
= [LICENSE
« W workspace
= B ipynb_checkpoints
= [README-checkpoint.md
= [wi_guickstart-checkpoint.ipynb
[README.md
Dapt.txt
O postBuild
[requirements.txt
= [Ywi_quickstartipynb
[fetch.ixt
[manifest-mds.txt
[manifest-sha256.ixt
W metadata

© 0 0 o0

Eiles (1.6 MB)
Name Size
5e7e10163632f4f0c84c51a8.zip 16MB

md5:3020d06291303f3f66b529208656b89 @

References
f Citations @)
Showonly: " Literature (0) ' Dataset (0) ' Software (0) Unknown (0)

bord/516867#collapseTwo |!S Version

v

479 Bytes
243 Bytes
55 Bytes

170 Bytes

1.2kB
791.4kB
1.2kB

4 Bytes
28 Bytes
17 Bytes
791.4kB
114 Bytes
537 Bytes
793 Bytes

@ Preview || & Download

Search Q

(& Edit

80 34

@ views & downloads

See more details.

Indexed in

OpenAlRE

Publication date:
March 27,2020

DOI:

Keyword(s):

Related identifiers:
Cites
10.5065/D6862DM8
10.5065/D6862DM8

Derived from

10.5072/zenodo.501446
10.5072/zenodo.515858
10.5072/zenodo.502521
10.5072/zenodo.490450

License (for files):
(Z Creative Commons Attribution 4.0 International

Versions

Version 10 Mar 27,2020
10.5072/zenodo. 515867

Version 9 Mar 27,2020
10.5072/zen0do.515858

Version 8 Mar 2, 2020

_images/zenodo_step_5.png
Personal access token / Demo

Access token
19g

Please copy the personal access token now. You won't see it again!

Do not share this personal access token. It gives full access to your account.

_images/osf_step_5.png
Personal access tokens

€ Back to list of tokens

Create token

Token name

Demo

Scopes
Scopes limit access for personal access tokens.

osf.full_read

View all information associated with this account, including for private projects.
osf.full_write

View and edit all information associated with this account, including for private projects.
osf.users.profile_read

Read your profile data
osf.users.email_read

Read your primary email address.

_images/osf_step_6.png
Personal access tokens

€ Back to list of tokens

Token Demo created:

@l e

This is the only time your token will be displayed.

This token will never expire. This token should never be shared with others. If it is accidentally revealed publicly, it should be deactivated immediately.

Edit scopes

_images/osf_step_4.png
Personal access tokens

Personal access tokens function like ordinary OAuth access tokens. They can be used to authenticate to the API. Create token

test_upload X

