
PresQT

Center For Research Computing

Oct 21, 2021

CONTENTS

1 Architecture/Infrastructure 3
1.1 Development Environments . 3
1.2 QA/Production Deployments . 3

2 Development Environment Setup 5
2.1 Prerequisites . 5
2.2 Local Development Environment Setup . 5
2.3 Cron Container . 6

3 Authentication/Authorization 7
3.1 Target Token Instructions . 7

4 User Notes 21
4.1 Transfer Details . 21

5 Developer Notes 23
5.1 Testing . 23
5.2 Docker Commands . 23
5.3 Updating Documentation . 24
5.4 GitHub Differences . 24

6 Target Integration 25
6.1 Target Endpoints . 25
6.2 Resource Endpoints . 27
6.3 Resource Download Endpoint . 31
6.4 Resource Upload Endpoint . 33
6.5 Resource Transfer Endpoint . 36
6.6 Keyword Enhancement Endpoint . 36
6.7 Error Handling . 38

7 API Endpoints 39
7.1 Authentication . 39
7.2 Duplicate File Handling . 39
7.3 Searching Resource Collections . 39
7.4 Paginating Resource Collections . 39
7.5 Target Endpoints . 40
7.6 Resource Endpoints . 43
7.7 Resource Download Endpoints . 47
7.8 Resource Upload Endpoints . 50
7.9 Resource Transfer Endpoints . 54
7.10 Keyword Enhancement Endpoints . 60

i

8 Web Services 65
8.1 Fixity . 65
8.2 File Transfer Service (FTS) Metadata . 67
8.3 Keyword Assignment . 73
8.4 Preservation Quality . 75

9 Services 77
9.1 EaaSI (Emulation-as-a-Service Infrastructure) Service . 77
9.2 FAIR Evaluator Service . 77
9.3 FAIRshake Assessment Service . 77

10 Service Endpoints 79
10.1 Service Endpoints . 79
10.2 Keyword Enhancement . 80
10.3 EaaSI Endpoints . 81
10.4 FAIRshare Endpoints . 83
10.5 FAIRshake Endpoints . 85

11 Resources 89
11.1 Links . 89
11.2 Example BagIts . 89

12 QA Testing 91
12.1 Resources . 92
12.2 BagIt Tool . 92
12.3 Getting Authorization Tokens From Partner Sites . 92
12.4 Test Files . 92
12.5 Known Bugs And Issues . 93
12.6 Testing Instructions . 93
12.7 Verifying Fixity . 105
12.8 Verifying Keyword Enhancement . 106
12.9 Services . 107

13 Other Integrations 113
13.1 Whole Tale Integration Proposal . 113
13.2 Whole Tale Integration Implementation . 114

14 Under Development 119

15 Indices 121

HTTP Routing Table 123

ii

PresQT

PresQT (Preservation Quality Tool) is an open-source tool with RESTful services to improve Preser-
vation and Re-use of Research Data and Software.

Note: Development is underway by the development team in the Center for Research Computing at Notre Dame.
This documentation will grow/be changed throughout the life of the PresQT project. Readers should expect that pages
will often be incomplete and/or move as features are actively being developed and implemented. Please send any
feedback to the content presented here to Noel Recla nrecla@nd.edu

More information can be found here https://presqt.crc.nd.edu/

Current Target Integrations:

Tar-
get

Col-
lec-
tion

SearchDe-
tail

Down-
load

Up-
load

Transfer In [Tar-
gets]

Transfer Out
[Targets]

Hash
Algo-
rithms

Key-
word
Get

Key-
words
Upload

OSF [Github, Cura-
teND, Zenodo,
GitLab, FigShare]

[Github, Zen-
odo, GitLab,
FigShare]

[sha256,
md5]

cu-
ra-
teND

[OSF, Github,
Zenodo, GitLab,
FigShare]

[md5]

Github [OSF, CurateND,
Zenodo, GitLab,
FigShare]

[OSF, Zen-
odo, GitLab,
FigShare]

[]

Zen-
odo

[OSF, Github,
CurateND, GitLab,
FigShare]

[OSF, Github,
GitLab,
FigShare]

[md5]

Git-
Lab

[OSF, Github,
CurateND, Zenodo,
FigShare]

[OSF, GitHub,
Zenodo,
FigShare]

[sha256]

FigShare [OSF, Github,
CurateND, Zenodo,
Gitlab]

[OSF, Github,
Gitlab, Zenodo]

[md5]

Current Service Integrations:

Service Functionality
EaaSI Send resources from a PresQT server to EaaSI to generate an emulation proposal
Keyword Enhancement Suggest/add keywords to existing keywords
FAIRshare Evaluator Evaluate the FAIR-ness of a resource
FAIRshake Assessment Manually assess the FAIRness of a resource

CONTENTS 1

https://presqt.crc.nd.edu/

PresQT

2 CONTENTS

CHAPTER

ONE

ARCHITECTURE/INFRASTRUCTURE

1.1 Development Environments

PresQT uses Docker throughout its pipeline to make it as easy as possible for newcomers to the project to get up and
running with PresQT services. This was accomplished by creating an easy to use development environment using
Docker compose.

The diagram below illustrates how we are using Docker Compose to create a constellation of 2 containers on developer
machines representing the two essential components of PresQT:

• Nginx

– Serves as a security layer for incoming requests to PresQT

– Can also serve as a load balancer in the future

• Django/Gunicorn

– After passing through the Nginx layer, this container processes API requests from users and then takes the
necessary actions to fulfill the user’s requests by communicating with partner services via the their own
APIs.

INSERT IMAGE HERE

1.2 QA/Production Deployments

Unsurprisingly, there is a significant overlap between the developer setup and the QA/Production deployment archi-
tecture. The following is how they will vary:

• One machine (the “Web Server”) will be the host for the Nginx container and one or more identical Django
containers that will respond to APIs requests from client researchers in a load balanced manner.

INSERT IMAGE HERE

3

PresQT

4 Chapter 1. Architecture/Infrastructure

CHAPTER

TWO

DEVELOPMENT ENVIRONMENT SETUP

2.1 Prerequisites

• Local installation of Docker for Mac/Windows/Linux

• Knowledge of Git procedures

• Knowledge of setting environment variables

• Knowledge of docker-compose utility.

2.2 Local Development Environment Setup

1. Clone the repo to your local machine in the desired folder location:

$ git clone https://github.com/ndlib/presqt.git

2. Export required ENV_VARS:

• ENVIRONMENT: Should be either production or development

• SECRET_KEY: A Django “secret key” value.

Example Exportation
$ export ENVIRONMENT=development
$ export SECRET_KEY=y4xgryt7ex9g+4mcs4=^sg5afp3lz#=94eb6=6o6l61o=a31y_h

3. Export optional ENV_VARS for testing:

• CURATE_ND_TEST_TOKEN: The test token for Curate’s API.

• GITHUB_TEST_USER_TOKEN: The test token for GitHub’s API.

• OSF_TEST_USER_TOKEN: The test token for OSF’s API.

• OSF_PRIVATE_USER_TOKEN: The private test token for OSF’s API.

• OSF_UPLOAD_TEST_USER_TOKEN: The upload test token for OSF’s API.

• OSF_PRESQT_FORK_TOKEN: The PresQT fork user test token for OSF’s API.

• ZENODO_TEST_USER_TOKEN: The test token for Zenodo’s API.

• GITLAB_TEST_USER_TOKEN: The test token for GitLab’s API.

• FIGSHARE_TEST_USER_TOKEN: The test token for FigShare’s API.

5

PresQT

Note: Contact an administrator to get the target test tokens.

4. Execute docker-compose up within the repo’s base folder.

$ docker-compose up --build

5. Navigate to https://localhost/api_v1/ in your browser.

2.3 Cron Container

There is now a third docker container that is responsible for running clean up tasks at specified times. It has been
implemented in development to run the delete_outdated_mediafiles command every 15 minutes. The command has
also been altered slightly to delete any mediafiles held in these directories when you are in a development environment.
The command is set to run daily at 4:30am for our other servers.

6 Chapter 2. Development Environment Setup

https://localhost/api_v1/

CHAPTER

THREE

AUTHENTICATION/AUTHORIZATION

PresQT will not have the ability to create a ‘session’ for the user based on authentication. It will be expecting tokens
to be passed through the header of the request. When retrieving items it expects ‘presqt-source-token’ to be in the
header. When depositing an item it expects ‘presqt-destination-token’ to be in the header.

3.1 Target Token Instructions

3.1.1 Open Science Framework

1. Navigate to and login to your account.

2. Upon logging in, click on your username in the top right corner and then click on Settings.

3. Once in‘‘ Settings, click on Personal Access Tokens in the left hand menu.

4. Click on Create token.

5. Create a token name and select all scope options. Then press Create token.

6. Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

3.1.2 CurateND

1. Navigate to and login to your account.

2. In the top right corner, select Manage and then click on API Access Tokens.

3. Click on Create New Token.

4. Make sure you copy this token somewhere securely.

3.1.3 GitHub

1. Navigate to and login to your account.

2. In the top right corner, select your profile picture and then click on Settings.

3. In the bottom left of your settings, select Developer Settings.

4. On the left hand side of this screen, select Personal Access Tokens.

5. Click on Generate New Token.

6. Add a note about what the token will be used for, and select all scopes. Then select Generate Token.

7

PresQT

8 Chapter 3. Authentication/Authorization

PresQT

3.1. Target Token Instructions 9

PresQT

10 Chapter 3. Authentication/Authorization

PresQT

3.1. Target Token Instructions 11

PresQT

7. Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

3.1.4 Zenodo

1. Navigate to and login to your account.

2. In the top right corner, select your username and then click on Applications.

3. In the Personal access tokens section, click on New token.

4. Give the token a name and select all scopes, then click Create.

5. Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

3.1.5 GitLab

1. Navigate to and login to your account.

2. In the top right corner, select your username and then click on Settings.

3. In the left hand menu, select Access Tokens.

4. Give the token a name and select all scopes, then click Create personal access token.

5. Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

3.1.6 FigShare

1. Navigate to and login to your account.

2. In the top right corner, select your username and then click on Applications.

12 Chapter 3. Authentication/Authorization

PresQT

3.1. Target Token Instructions 13

PresQT

14 Chapter 3. Authentication/Authorization

PresQT

3.1. Target Token Instructions 15

PresQT

16 Chapter 3. Authentication/Authorization

PresQT

3.1. Target Token Instructions 17

PresQT

18 Chapter 3. Authentication/Authorization

PresQT

3. Scroll down to the bottom of the screen, and click Create Personal Token.

4. Give the token a description (name), then click Save.

5. Make sure you copy this token somewhere securely, this will be the only time it is shown to you.

3.1. Target Token Instructions 19

PresQT

20 Chapter 3. Authentication/Authorization

CHAPTER

FOUR

USER NOTES

4.1 Transfer Details

Tar-
get

As Source As Destination

OSF Only provides checksums for OSF
Storage files
Keywords written to ‘Tags’ attribute

Writes PRESQT_FTS_METADATA.json file
Keywords written to ‘Tags’ attribute.
Stores all resources in OSF Storage

cu-
ra-
teND

Provides checksums for all files N/A

Github Does not provide checksums for files
Keywords written to ‘Topics’ attribute

Writes PRESQT_FTS_METADATA.json file
Does not provide checksums for files
Keywords written to ‘Topics’ attribute

Zen-
odo

Provides checksums for all files
Keywords written to ‘Keywords’ at-
tribute

Writes PRESQT_FTS_METADATA.json file
Resources will be written in BagIt format as a ZIP file
Keywords written to ‘Keywords’ attribute

Git-
Lab

Provides checksums for all files
Keywords written to ‘Tag List’ at-
tribute

Writes PRESQT_FTS_METADATA.json file
Keywords written to ‘Tag List’ attribute

FigshareProvides checksums for all files
Keywords written to ‘Tags’ attribute

Writes PRESQT_FTS_METADATA.json file
Resources will be written in BagIt format as a ZIP file
Keywords written to ‘Tags’ attribute

21

PresQT

22 Chapter 4. User Notes

CHAPTER

FIVE

DEVELOPER NOTES

5.1 Testing

A high code coverage percentage has been maintained with unit and integration tests for all code using a package
called Coverage (https://coverage.readthedocs.io/en/v4.5.x/) to track code coverage.

To run unit tests without using Coverage:

$ python manage.py test

To run unit tests using Coverage with comprehensive code coverage report generated into an HTML file:

coverage run manage.py test && coverage combine && coverage html

Note: This command will generate a directory that is ignored by Git via our .gitignore file. To see the code coverage
open the file /coverage_html/index.html in a browser.

Note: Coverage options are specified in a configuration file called .coveragerc. This is where you would add
files/directories you want to omit from the Coverage report.

Note: ‘coverage combine’ will take the coverage files created for multiprocesses (located in the base directory) and
will combine them with the main coverage files . If a test using multiprocessing fails these coverage files will remain
and must be deleted manually.

We also tried to split unit and integration tests up between core PresQT code and Target code. Tests that cover core code
reside in presqt/api_v1/tests/ while target tests that cover target functions reside in presqt/targets/
{target_name}/tests/ .

Attention: All tests require their corresponding target tokens to be stored as environment variables since these
tokens can not be stored publicly. Contact an administrator for access to these.

5.2 Docker Commands

To rebuild the docker container after a new package has been added to the requirements files:

23

https://coverage.readthedocs.io/en/v4.5.x/

PresQT

$ docker-compose up --build

Run the following command for an interactive -i terminal -t for this container:

$ docker exec -i -t presqt_presqt_django_1 /bin/ash

5.3 Updating Documentation

As the project grows we encourage developers to add documentation. PresQT documentation is built using Sphinx
and ReadtheDocs.

When documentation is added you should just need to run while in the /docs directory:

$ make clean
$ make html

Otherwise reference Sphinx documentation for more information on adding documentation, https://www.sphinx-doc.
org/en/master/usage/quickstart.html.

5.4 GitHub Differences

There is a slight difference in how we have implemented GitHub as opposed to other partners. Due to the way GitHub’s
API handles files, there is no way for us to hit an endpoint with a given id. The only way to navigate to a files endpoint
is to know the associated GitHub username and repository title. We have decided to make our own unique id’s for
these items by combining the repo_id and the path to the file/dir.

Example of an id:

21387123:path2%Fto%2Ffile%2Ejpg

We then translate this into two get requests. The first one will be to the repo id.

Example:

https://api.github.com/repositories/21387123

From this, we can get a contents url that we can translate into a request.

Example:

https://api.github.com/repos/PresQT-QA-TEST/Good_Egg-PresQT2-/contents/path/to/file.
→˓jpg

Using this custom generated id, we can hit this endpoint on PresQT to get file details.

https://presqt-qa.crc.nd.edu/api_v1/targets/github/resources/21387123:path%252Fto
→˓%252Ffile%252Ejpg

24 Chapter 5. Developer Notes

https://www.sphinx-doc.org/en/master/usage/quickstart.html
https://www.sphinx-doc.org/en/master/usage/quickstart.html

CHAPTER

SIX

TARGET INTEGRATION

The goal of PresQT is to make it as simple as possible for a new target to integrate itself with the PresQT services.
Below are lists of code actions to take when integrating a target.

6.1 Target Endpoints

‘Targets’ are providers the PresQT API will connect to such as OSF, CurateND, HubZero, etc. Since PresQT doesn’t
have a database, the Targets’ information will be held in a JSON file located in /presqt/specs/targets.json.
You must add data to this file to integrate with PresQT.

6.1.1 Target Collection/Details

1. Add your target dictionary to the file presqt/specs/targets.json

Target JSON Details:

25

PresQT

Key Type Description
name str Name of the Target. This will be used as path parameters

in the URL
readable_name str Human readable name of the Target for the front end
status_url str Url which is 200 OK if the API works.
token_url str Url where users can create their API tokens.
supported_actions ar-

ray
Actions the target supports. Only make actions true when
action is working

re-
source_collection

bool Get all top level resources for the user in this target

resource_detail bool Get an individual resource’s details
re-
source_download

bool Download a resource

resource_upload bool Upload a resource
re-
source_transfer_in

bool Transfer a resource in to the target

re-
source_transfer_out

bool Transfer a resource out of the target

sup-
ported_transfer_partners

dict Targets this target can transfer in and out of

transfer_in ar-
ray

Targets this target can accept transfers from

transfer_out ar-
ray

Targets this target can transfer to

sup-
ported_hash_algorithms

ar-
ray

The hash algorithms supported by the target

infinite_depth bool Does the target support an infinite depth hierarchy?
search_parameters ar-

ray
Which search parameters does the target support? options:
[general, title, id, author]

keywords bool Fetch keywords
keywords_upload bool Upload keywords to the target specific keyword attribute.

Target JSON Example:

{
"name": "osf",
"readable_name": "OSF",
"status_url": "https://api.osf.io/v2/nodes/",
"token_url": "https://osf.io/settings/tokens",
"supported_actions": {

"resource_collection": true,
"resource_detail": true,
"resource_download": true,
"resource_upload": true,
"resource_transfer_in": true,
"resource_transfer_out": true,
"keywords": true,
"keywords_upload": true

},
"supported_transfer_partners": {

"transfer_in": ["github", "curate_nd"],
"transfer_out": ["github"]

},

(continues on next page)

26 Chapter 6. Target Integration

PresQT

(continued from previous page)

"supported_hash_algorithms": ["sha256", "md5"],
"infinite_depth": true,
"search_parameters": ["title", "id", "general", "author"]

}

There is a management command that will validate targets.json that can be run after you add
your target. It can be run manually with:

$ python manage.py validate_target_json

Otherwise the same management command is run when docker-compose up runs. If the vali-
dation fails then it does not allow the docker containers to be spun up.

2. Add your target directory inside presqt/targets/

• Your target integration functionality will exist here.

6.2 Resource Endpoints

6.2.1 Resource Collection

Targets that integrate with the Resources Collection API Endpoint must have a function that returns a specifically
structured dataset.

1. Update your target in presqt/specs/targets.json by setting supported_actions.
resource_collection to true.

2. Add a function to return the resource collection inside of your target directory.

• If you would like to keep your file/function names consistent with what already ex-
ists add this function at presqt/targets/<target_name>/functions/fetch/
<target_name>_fetch_resources()

• The function must have the following parameters in this order:

token str User’s token for the target
query_parameter str The query_parameter parameters passed to the API View

• The function must return the following in this order:

resources list list of Python dictionaries for each top level resource
pages dict dictionary of pagination details

Resource dictionary details:

6.2. Resource Endpoints 27

PresQT

kind str Type of Resource
Options: [container,
item]

kind_name str Target specific name
for that kind

For example OSF
kind_names are:
[project, folder,
file]

container str ID of the container for
the resource.
For example if the re-
source is a file in a
folder then the con-
tainer value would be
the ID of the folder
Can be None if the
resource has no con-
tainer

id str ID of the resource
title str Title of the resource

Page dictionary details:

first_page str The first page number
previous_page str The previous page number
next_page str The next page number
last_page str The last page number
total_pages str The total amount of pages
per_page str The amount of resources per page

Example Resource Collection Function:

def <your_target_name>_fetch_resources(token, query_parameter):
Process to obtain resource collection IF search_parameter

→˓goes here.
Process to obtain resource collection goes here.
Variables below are defined here to show examples of

→˓structure.
target_resources = get_target_resources()

resources = []
for resource in target_resources:

resource.append({
'kind': 'container',
'kind_name': 'Project',
'id': resource.id,
'container': None,
'title': resource.title

})

Process to obtain page numbers goes here

(continues on next page)

28 Chapter 6. Target Integration

PresQT

(continued from previous page)

pages = {
"first_page": '1',
"previous_page": None,
"next_page": None,
"last_page": '1',
"total_pages": '1',
"per_page": 10

}
return resources, pages

3. Add the resource collection function to presqt/api_v1/utilities/utils/function_router.py

• Follow the naming conventions laid out in this class’ docstring

• This will make the function available in core PresQT code

6.2.2 Resource Detail

Targets that integrate with the Resources Detail API Endpoint must have a function that returns a specifically structured
dataset that represents the resource.

1. Update your target in presqt/specs/targets.json by setting supported_actions.
resource_detail to true.

2. Add a function to return the resource details inside of your target directory.

• If you would like to keep your file/function names consistent with what already ex-
ists add this function at presqt/targets/<target_name>/functions/fetch/
<target_name>_fetch_resource()

• The function must have the following parameters in this order:

token str User’s token for the target
resource_id str ID for the resource we want to fetch

• The function must return the following in this order:

resource object Python object representing the resource requested

Resource dictionary details:

6.2. Resource Endpoints 29

PresQT

kind str Type of Resource
Options: [container, item]

kind_namestr Target specific name for that kind
For example OSF kind_names are: [node, folder, file]

id str ID of the resource
title str Title of the resource
date_createdstr Date the resource was created
date_modifiedstr Date the resource was last modified
hashes dict Hashes of the resource in the target

Key must be the hash algorithm used value must be the hash itself
Can be an empty dict if no hashes exist

ex-
tra

dict Any extra target specific data.
Can be an empty dict

chil-
dren

list A list of children resources, each child in the list must be a
dictionary that follows the structure of the resource_collection
dictionaries listed above. Example: [{‘kind’: ‘’, ‘kind_name’: ‘’,
‘id’: ‘’, ‘container’: ‘’, ‘title’: ‘’}]

Example Resource Collection Function:

def <your_target_name>_fetch_resource(token, resource_id):
Process to obtain resource details goes here.
Variables below are defined here to show examples

→˓of structure.

resource = {
"kind": "item",
"kind_name": "file",
"id": "12345",
"title": "o_o.jpg",
"date_created": "2019-05-13T14:54:17.129170Z",
"date_modified": "2019-05-13T14:54:17.129170Z",
"hashes": {

"md5": "abca7ef057dcab7cb8d79c36243823e4",
"sha256":

→˓"ea94ce55261720c56abb508c6dcd1fd481c30c09b7f2f5ab0b79e3199b7e2b55
→˓"

},
"extra": {

"category": "project",
"fork": false,
"current_user_is_contributor": true,
"preprint": false,
"current_user_permissions": [

"read",
"write",
"admin"

],
},
"children": []

}
return resource

3. Add the resource detail function to presqt/api_v1/utilities/utils/function_router.py

• Follow the naming conventions laid out in this class’ docstring

30 Chapter 6. Target Integration

PresQT

• This will make the function available in core PresQT code

6.3 Resource Download Endpoint

1. Update your target in presqt/specs/targets.json by setting supported_actions.
resource_download to true.

2. Add a function to perform the resource download inside of your target directory.

• If you would like to keep your file/function names consistent with what already exists
add this function at presqt/targets/<target_name>/functions/download/
<target_name>_download_resource()

• The function must have the following parameters in this order:

token str User’s token for the target
resource_id str ID for the resource we want to download
process_info_path str The path to this download’s process_info_path
action str The type of action occurring

• The function must return a dictionary with the following keys:

re-
sources

list List of dictionaries containing resource data

empty_containerslist List of strings identifying empty container paths.
They need to be specified separately because they are written
separate from the file data

ac-
tion_metadata

dict Dictionary containing FTS metadata about the action occurring

ex-
tra_metadata

dict Dictionary containing extra metadata identified by partners

Resource Dictionary Details

file bytes The file contents in byte format
hashes dict Hashes of the resource in the target

Key must be the hash algorithm used value must be the
hash itself
Can be an empty dict if no hashes exist

title str Title of the file
path str Path to save the file to at the destination

Start the path with a /
source_pathstr Full path of the file at the source

Start the path with a /
ex-
tra_metadata

dict Dictionary containing any extra data to save to FTS
metadata

Action Metadata Dictionary Details

sourceUser-
name

str Username of the user making the request at the
source target

6.3. Resource Download Endpoint 31

PresQT

Extra Metadata Dictionary Details

title str The title of the resource
creators list List of dictionaries containing creator info

{“first_name”: ‘’, “last_name”: ‘’, “ORCID”:
‘’}

publica-
tion_date

str The date the resource was published

descrip-
tion

str A brief description of the resource

keywords list A list of associated keywords
license str The resource’s license
re-
lated_identifiers

list A list of dictionaries containing identifiers {“type”:
‘doi’, “identifier”: ‘’}

references str References related to the resource
notes str Notes related to the resource

• If you want to keep track of the progress of the download there are two functions available
to do so. update_process_info() is for updating the total number of resources in the
download and increment_process_info() is for updating the number of resources
gathered thus far.

Example Resource Download Function:

def <your_target_name>_download_resource(token, resource_id,
→˓process_info_path):

Process to download resource goes here.
Variables below are defined here to show examples of

→˓structure.
resources = [

{
'file': binary_file_contents,
'hashes': {'md5': '1ab2c3d4e5f6g', 'sha256':

→˓'fh3383h83fh'},
'title': 'file.jpg',
'path': '/path/to/file.jpg',
'source_path': 'project_name/path/to/file.jpg',
'extra_metadata': {

'dateSubmitted': '2019-10-22Z',
'creator': 'Justin Branco',

}
},
{

'file': binary_file_contents,
'hashes': {'md5': 'zadf23fg3', 'sha256':

→˓'9382hash383h'},
'title': 'funnysong.mp3',
'path': '/path/to/file/funnysong.mp3'
'source_path': 'project_name/path/to/file/funnysong.

→˓mp3',
'extra_metadata': {

'dateSubmitted': '2019-10-22Z',
'creator': 'Justin Branco',

}
}

(continues on next page)

32 Chapter 6. Target Integration

PresQT

(continued from previous page)

]
empty_containers = ['path/to/empty/container/', 'another/

→˓empty/']
action_metadata = {"sourceUsername": contributor_name}
extra_metadata = {

"title": project_info['title'],
"creators": creators,
"publication_date": project_info['date_created'],
"description": project_info['description'],
"keywords": project_info['tags'],
"license": license,
"related_identifiers": identifiers,
"references": None,
"notes": None

}
return {

'resources': files,
'empty_containers': empty_containers,
'action_metadata': action_metadata,
'extra_metadata': extra_metadata

}

3. Add the resource download function to presqt/api_v1/utilities/utils/function_router.py

• Follow the naming conventions laid out in this class’ docstring

• This will make the function available in core PresQT code

6.4 Resource Upload Endpoint

1. Update your target in presqt/specs/targets.json by setting supported_actions.
resource_upload to true.

2. Add a function to perform the resource upload inside of your target directory.

• If you would like to keep your file/function names consistent with what already ex-
ists add this function at presqt/targets/<target_name>/functions/upload/
<target_name>_upload_resource()

• The function must have the following parameters in this order:

token str User’s token for the target
resource_id str ID of the resource requested
re-
source_main_dir

str Path to the main directory on the server for the resources
to be uploaded

hash_algorithm str Hash algorithm we are using to check for fixity
file_duplicate_actionstr The action to take when a duplicate file is found

Options: [ignore, update]
pro-
cess_info_path

str The path to this download’s process_info_path

action str The type of action occurring

• The function must return a dictionary with the following keys:

6.4. Resource Upload Endpoint 33

PresQT

re-
sources_ignored

ar-
ray

Array of string paths of files that were ignored when uploading
the resource
Path should have the same base as resource_main_dir

re-
sources_updated

ar-
ray

Array of string paths of files that were updated when upload-
ing the resource
Path should have the same base as resource_main_dir

file_metadata_listlist List of dictionaries that contains FTS metadata and hash info
for each file

ac-
tion_metadata

dict Dictionary containing FTS metadata about the action occur-
ring

project_id str ID of the parent project for this upload. Needed for metadata
upload

project_linkstr The link to either the resource or the home page of the user if
not available through API

Metadata Dictionary Details

ac-
tion-
Root-
Path

str Original path of the file on the server before upload.
This is used to connect this metadata with download meta-
data if the action is a transfer.

des-
ti-
na-
tion-
Hash

dict Hash of the resource in the target that was calculated using
the hash_algorithm given as a function parameter
Key must be the hash algorithm used value must be the
hash itself
Can be an empty dict if no hashes exist

des-
ti-
na-
tion-
Path

str Full path of the file at the destination
Start the path with a /

title str Title of the file

Action Metadata Dictionary Details

destina-
tionUsername

str Username of the user making the request at the
destination target

Example Resource Upload Function:

def <your_target_name>_upload_resource(token, resource_id,
→˓resource_main_dir,

hash_algorithm, file_duplicate_action):
Process to upload resource goes here.
Variables below are defined here to show examples of

→˓structure.
file_metadata_list = [

{
"actionRootPath": 'resource_main_dir/path/to/

→˓updated/file.jpg',

(continues on next page)

34 Chapter 6. Target Integration

PresQT

(continued from previous page)

"destinationPath": '/path/to/updated/file.jpg',
"title": 'file.jpg,
"destinationHash": {'md5': '123456'} # hash_

→˓algorithm = 'md5'
}

]
resources_ignored = ['path/to/ignored/file.png', 'another/

→˓ignored/file.jpg']
resources_updated = ['path/to/updated/file.jpg']
action_metadata = {"destinationUsername": 'destination_

→˓username'}

return {
'resources_ignored': resources_ignored,
'resources_updated': resources_updated,
'action_metadata': action_metadata,
'file_metadata_list': file_metadata_list,
'project_id': '1234',
'project_link': 'https://osf.io/1234'

}

3. Add a function to upload FTS metadata to the correct location within the resource’s parent project.

• If you would like to keep your file/function names consistent with what al-
ready exists add this function at presqt/targets/<target_name>/functions/
upload_metadata/<target_name>_upload_metadata()

• The function must have the following parameters in this order:

token str User’s token for the target
project_id str The id of the parent project for the resource uploaded
meta-
data_dict

dict The FTS metadata dictionary to upload
At this point it will be a Python dict

• The function doesn’t return anything

Example Resource Upload Function:

def <your_target_name>_upload_metadata(token, project_id,
→˓metadata_dict):

Process to upload metadata goes here.

If you want to upload the extra metadata to fields
→˓supported by your API

you will have to add that functionality as well. The
→˓extra valuees are stored

in metadata_dict['extra_metadata]. IE:
update_project_with_metadata(url, metadata_dict['extra_

→˓metadata'])

3. Add the resource upload and upload metadata functions to presqt/api_v1/utilities/utils/
function_router.py

• Follow the naming conventions laid out in this class’ docstring

• This will make the function available in core PresQT code

6.4. Resource Upload Endpoint 35

PresQT

6.5 Resource Transfer Endpoint

1. Update your target in presqt/specs/targets.json by setting supported_actions.
resource_transfer_in, supported_actions.resource_transfer_out,
supported_actions.supported_transfer_partners.transfer_in, and
supported_actions.supported_transfer_partners.transfer_out appropriately.

The resource transfer endpoint utilizes the Download and Upload functions. If these two functions are in place then
transfer is available.

2. To support Keyword Enhancement during the transfer process, add keyword functions as outlined below in the
Keyword Enhancement Endpoint section

6.6 Keyword Enhancement Endpoint

Targets that want the ability to suggest or enhance new keywords must provide keyword functions.

6.6.1 Suggest Keywords

To support the suggestion of keywords, a keyword fetch function must be written that will fetch keywords from the
target.

1. Update your target in presqt/specs/targets.json by setting keywords to true.

2. Add a function to return a dictionary of keywords found in the target.

• If you would like to keep your file/function names consistent with what already exists
add this function at presqt/targets/<target_name>/functions/keywords/
<target_name>_fetch_keywords()

• The function must have the following parameters in this order:

token str User’s token for the target
resource_id str ID for the resource we want to get keywords from

• The function must return a dictionary with the following keys:

key-
words

ar-
ray

Array of keywords found in the target

<at-
tribute_name>

ar-
ray

Array of keywords found for this attribute
Name the key whatever the attribute name is. See example for
more details.

Example Keyword Fetch Function:

def <your_target_name>_fetch_keywords(token, resource_id):
Process to fetch keywords goes here.
Variables below are defined here to show examples of

→˓structures.
This target has keywords in two attributes, 'topics' and

→˓'tags'.
keyword_dictionary = {

(continues on next page)

36 Chapter 6. Target Integration

PresQT

(continued from previous page)

'topics': ['cat', 'dog'],
'tags': ['food', 'water'],
'keywords': ['cat', 'dog', 'food', 'water']

}

return keyword_dictionary

3. Add the keyword fetch function to presqt/api_v/utilities/utils/function_router.py

• Follow the naming conventions laid out in this class’ docstring

• This will make the function available in core PresQT code

6.6.2 Enhance Keywords

To support the enhancement of keywords, a keyword upload function must be written that will upload new enhanced
keywords to the target.

1. Update your target in presqt/specs/targets.json by setting keywords_upload to true.

2. Add a function to upload give keywords to the target.

• If you would like to keep your file/function names consistent with what already exists
add this function to presqt/targets/<target_name>/functions/keywords/
<target_name>_upload_keywords()

• The function must have the following parameters in this order:

token str User’s token for the target
resource_id str ID for the resource we want to upload keywords to
keywords list List of new keywords to upload

• The function must return a dictionary with the following keys:

updated_keywords list List of the final keyword list at the target
project_id str The ID of the project containing this resource

Example Keyword Upload Function:

def <your_target_name>_upload_keywords(token, resource_id, keywords):
Process to upload keywords goes here.
Variables below are defined here to show examples of structures.
updated_keywords = ['cat', 'food', 'feline', 'grub']
project_id = '1234'

return {'updated_keywords': updated_keywords, 'project_id': project_
→˓id}

3. Add the keyword upload function to presqt/api_v/utilities/utils/function_router.py

• Follow the naming conventions laid out in this class’ docstring

• This will make the function available in core PresQT code

6.6. Keyword Enhancement Endpoint 37

PresQT

6.7 Error Handling

When any of these target functions are called within PresQT core code they are wrapped inside of a Try-Except
clause which looks for the exception PresQTResponseException. The definition of this exception can be found
at presqt.utilities.exceptions.exceptions.PresQTResponseException.

38 Chapter 6. Target Integration

CHAPTER

SEVEN

API ENDPOINTS

7.1 Authentication

Refer to the authentication details here.

7.2 Duplicate File Handling

When Uploading or Transferring resources a header, presqt-file-duplicate-action, must be in-
cluded. The options are ignore or update. This header tells the target uploading the resource what to do when a
file being uploaded already exists in the source target.

Ignore will not update the duplicate file, even if the contents of the files don’t match.

Update will only update the duplicate file if the contents of the files don’t match.

7.3 Searching Resource Collections

Search results are ordered by date modified unless the target does not support it.

Only a single search filter can be used at a time.

7.3.1 Search Filters

General search across all available target search parameters: resources/?general=search_value

Search by project ‘title’: resources/?title=Project+Title

Search by project ‘id’: resources/?id=123456

Search by project ‘author’: resources/?author=bfox6

Search by project ‘keywords’: resources/?keywords=cat

7.4 Paginating Resource Collections

Pagination has been added at the collection level to improve load times. Targets now return Pagination information for
users resources, as well as searched resources.

39

PresQT

7.4.1 Page Parameter

Pagination across all available targets: resources/?page=page_number

7.5 Target Endpoints

7.5.1 Target Collection

GET /api_v1/targets/
Retrieve details of all Targets.

Example request:

GET /api_v1/targets/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "osf",
"readable_name": "OSF",
"status_url": "https://api.osf.io/v2/nodes/",
"token_url": "https://osf.io/settings/tokens",
"supported_actions": {

"resource_collection": true,
"resource_detail": true,
"resource_download": true,
"resource_upload": true,
"resource_transfer_in": true,
"resource_transfer_out": true
"keywords": true,
"keywords_upload": true,

},
"supported_transfer_partners": {

"transfer_in": [
"github",
"curate_nd"

],
"transfer_out": [

"github"
]

},
"supported_hash_algorithms": [

"sha256",
"md5"

],
"infinite_depth": true
"links": [

{
"name": "Detail",

(continues on next page)

40 Chapter 7. API Endpoints

PresQT

(continued from previous page)

"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/",
"method": "GET"

}
]

},
{

"name": "curate_nd",
"readable_name": "CurateND",
"status_url": "https://curate.nd.edu/api/items",
"token_url": "https://curate.nd.edu/api/access_tokens",
"supported_actions": {

"resource_collection": true,
"resource_detail": true,
"resource_download": true,
"resource_upload": false,
"resource_transfer_in": false,
"resource_transfer_out": true,
"keywords": true,
"keywords_upload": false,

},
"supported_transfer_partners": {

"transfer_in": [],
"transfer_out": [

"osf",
"github"

]
},
"supported_hash_algorithms": [

"md5"
],
"infinite_depth": false
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/curate_nd/

→˓",
"method": "GET"

}
]

}
]

Status Codes

• 200 OK – Targets successfully retrieved

7.5.2 Target Details

GET /api_v1/targets/(str: target_name)/
Retrieve details of a single Target.

Example request:

GET /api_v1/targets/OSF/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

7.5. Target Endpoints 41

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

PresQT

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "osf",
"readable_name": "OSF",
"status_url": "https://api.osf.io/v2/nodes/",
"token_url": "https://osf.io/settings/tokens",
"supported_actions": {

"resource_collection": true,
"resource_detail": true,
"resource_download": true,
"resource_upload": true,
"resource_transfer_in": true,
"resource_transfer_out": true,
"keywords": true,
"keywords_upload": true,

},
"supported_transfer_partners": {

"transfer_in": [
"github",
"curate_nd"

],
"transfer_out": [

"github"
]

},
"supported_hash_algorithms": [

"sha256",
"md5"

],
"infinite_depth": true
"links": [

{
"name": "Collection",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/

→˓",
"method": "GET"

},
{

"name": "Upload",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/

→˓",
"method": "POST"

},
{

"name": "Transfer",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/

→˓",
"method": "POST"

}
]

}

Status Codes

• 200 OK – Target successfully retrieved

42 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

PresQT

• 404 Not Found – Invalid Target name

7.6 Resource Endpoints

7.6.1 Resource Collection

GET /api_v1/targets/(str: target_name)/resources/
Retrieve details of all top level resources for a given Target and User Token

Example request:

GET /api_v1/targets/OSF/resources/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"resources": [

{
"kind": "container",
"kind_name": "project",
"id": "cmn5z",
"container": null,
"title": "Test Project",
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/

→˓resources/cmn5z/",
"method": "GET"

}
]

},
{

"kind": "container",
"kind_name": "project",
"id": "12345",
"container": null,
"title": "Egg Project",
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/

→˓resources/12345/",
"method": "GET"

}
]

}
],
"pages": {

"first_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/
→˓resources?page=1",

(continues on next page)

7.6. Resource Endpoints 43

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

(continued from previous page)

"previous_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/
→˓resources?page=5",

"next_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?
→˓page=7",

"last_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?
→˓page=30",

"total_pages": 1,
"per_page": 10,
"base_page": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources?

→˓page="
}

}

Example request w/ search parameter:

GET /api_v1/targets/OSF/resources?title=egg/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example request w/ search parameter and page parameter:

GET /api_v1/targets/OSF/resources?title=egg&page=3/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Search filtering rules can be found here.

Request Headers

• presqt-source-token – User’s token for the source target

Status Codes

• 200 OK – Resources successfully retrieved

• 400 Bad Request – The Target does not support the action resource_collection

• 400 Bad Request – presqt-source-token missing in the request headers

• 400 Bad Request – The search query is not formatted correctly.

• 401 Unauthorized – Token is invalid

• 404 Not Found – Invalid Target name

7.6.2 Resource Detail

GET /api_v1/targets/(str: target_name)/resources/(str: resource_id).json/
Retrieve details of a Resource in JSON format

Example request:

GET /api_v1/targets/OSF/resources/1234.json/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

44 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

HTTP/1.1 200 OK
Content-Type: application/json

{
"kind": "container",
"kind_name": "project",
"id": "cmn5z",
"title": "Test Project",
"date_created": "2019-05-13T15:06:34.521000Z",
"date_modified": "2019-05-13T15:06:34.521000Z",
"hashes": {

"md5": null,
"sha256": null

},
"extra": {

"last_touched": "2019-11-07T17:00:51.680957",
"materialized_path": "/Test Project",
"current_version": 1,
"provider": "googledrive",
"path": "/Test Project",
"current_user_can_comment": true,
"guid": "byz93",
"checkout": null,
"tags": [],
"size": null

},
"children": [

{
"kind": "container",
"kind_name": "storage",
"id": "cmn5z:osfstorage",
"container": "cmn5z",
"title": "osfstorage",
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/

→˓resources/cmn5z:osfstorage/",
"method": "GET"

}
]

},
{

"kind": "container",
"kind_name": "folder",
"id": "5cd9832cf244ec0021e5f245",
"container": "cmn5z:osfstorage",
"title": "Images",
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/

→˓resources/5cd9832cf244ec0021e5f245/",
"method": "GET"

}
]

},

(continues on next page)

7.6. Resource Endpoints 45

PresQT

(continued from previous page)

{
"kind": "item",
"kind_name": "file",
"id": "5cd98510f244ec001fe5632f",
"container": "5cd9832cf244ec0021e5f245",
"title": "22776439564_7edbed7e10_o.jpg",
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/

→˓resources/5cd98510f244ec001fe5632f/",
"method": "GET"

}
]

}
],
"links": [

{
"name": "Download",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/

→˓cmn5z.zip/",
"method": "GET"

},
{

"name": "Upload",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/

→˓cmn5z/",
"method": "POST"

},
{

"name": "Transfer",
"link": "https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/

→˓cmn5z/",
"method": "POST"

}
],
"actions": [

"Transfer"
]

}

Request Headers

• presqt-source-token – User’s token for the source target

Status Codes

• 200 OK – Resource successfully retrieved

• 400 Bad Request – The Target does not support the action resource_detail

• 400 Bad Request – presqt-source-token missing in the request headers

• 400 Bad Request – Invalid format given. Must be json

• 401 Unauthorized – Token is invalid

• 403 Forbidden – User does not have access to this Resource

• 404 Not Found – Invalid Target name

46 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

• 404 Not Found – Resource with this ID not found for this user

• 410 Gone – Resource no longer available

7.7 Resource Download Endpoints

7.7.1 Download Resource

GET /api_v1/targets/(str: target_name)/resources/(str: resource_id).zip/
Retrieve a Resource as a ZIP file. This endpoint begins the download process but does not return the zip file.
Rather, it returns a link which can be used to the hit the Job Status endpoint to check in on the process.

Example request:

GET /api_v1/targets/OSF/resources/1234.zip/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"message": "The server is processing the request.",
"download_job_zip": "https://presqt-prod.crc.nd.edu/api_v1/job_status/

→˓download.zip/",
"download_job_json": "https://presqt-prod.crc.nd.edu/api_v1/job_status/

→˓download.json/"
}

Request Headers

• presqt-source-token – User’s token for the source target

Status Codes

• 202 Accepted – Resource has begun downloading

• 400 Bad Request – The Target does not support the action resource_download

• 400 Bad Request – User currently has processes in progress.

• 400 Bad Request – presqt-source-token missing in the request headers

• 400 Bad Request – presqt-email-opt-in missing in the request headers

• 400 Bad Request – Invalid format given. Must be zip

• 404 Not Found – Invalid Target name

7.7.2 Resource Download Job Status

GET /api_v1/job_status/download.json/
Use the Job Status endpoint to check in on the Download Process. Provide the
presqt-source-token in the headers.

Example request

7.7. Resource Download Endpoints 47

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

GET /api_v1/job_status/download/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the download request is still in progress:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"job_percentage": 27,
"status": "in_progress",
"status_code": null,
"message": "Downloading files from OSF..."

}

Example response if the download request finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": "200",
"message": "Download successful. See PRESQT_FTS_METADATA.json for more

→˓details.",
"zip_name": "osf_download_cmn5z.zip",
"failed_fixity": [

"/Test Project/googledrive/PresQT Swimlane Activity Diagram 03_21_19 (2).
→˓pdf",

"/Test Project/googledrive/module_responses.csv",
"/Test Project/googledrive/Google Images/IMG_4740.jpg",
"/Test Project/googledrive/Character Sheet - Alternative - Print Version.

→˓pdf"
],
"job_percentage": 100,
"status": "finished"

}

Example response if the download failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"job_percentage": 0,
"status": "failed",
"status_code": 404,
"message": "Resource with id 'bad_id' not found for this user."

}

Request Headers

• presqt-source-token – User’s Token for the source target

Status Codes

• 200 OK – Download has finished successfully

• 202 Accepted – Download is being processed on the server

48 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3

PresQT

• 400 Bad Request – presqt-source-token missing in the request headers

• 400 Bad Request – Invalid format given. Must be json or zip.

• 404 Not Found – Invalid Ticket Number

• 500 Internal Server Error – Download failed on the server

GET /api_v1/job_status/download.zip/
Check on the Download Process for the given user. If download has failed or is in progress this endpoint
will return a JSON payload detailing this. If download has completed this endpoint will return the zip file of the
resource originally requested.

Example request:

GET /api_v1/job_status/download.zip/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the download request is still in progress:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"job_percentage": 27,
"status": "in_progress",
"status_code": null,
"message": "Downloading files from OSF..."

}

Example response if download finished successfully:

HTTP/1.1 200 OK
Content-Type: application/zip

Payload is ZIP file

Example response if the download failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"job_percentage": 0,
"status": "failed",
"status_code": 404,
"message": "Resource with id 'bad_id' not found for this user."

}

Request Headers

• presqt-source-token – User’s Token for the source target

Status Codes

• 200 OK – Download has finished successfully

• 202 Accepted – Download is being processed on the server

• 400 Bad Request – presqt-source-token missing in the request headers

7.7. Resource Download Endpoints 49

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

PresQT

• 400 Bad Request – Invalid format given. Must be json or zip.

• 404 Not Found – Invalid Ticket Number

• 500 Internal Server Error – Download failed on the server

PATCH /api_v1/job_status/upload/
Cancel the Download Process for the given user.‘.

If the download has finished before it can be cancelled it will return the finished info from process_info.json.

If the download was successfully cancelled then it will return the cancelled info from process_info.json.

Example request:

PATCH /api_v1/job_status/download/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if download cancelled successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": "499",
"message": "Download was cancelled by the user"

}

Example response if download finished before endpoint was able to cancel:

HTTP/1.1 406 OK
Content-Type: application/json

{
"status_code": "200",
"message": "Download successful."

}

Request Headers

• presqt-source-token – User’s Token for the source target

Status Codes

• 200 OK – Download cancelled

• 406 Not Acceptable – Download finished before cancellation

• 400 Bad Request – presqt-source-token missing in the request headers

• 404 Not Found – Invalid Ticket Number

7.8 Resource Upload Endpoints

7.8.1 Upload New Top Level Resource

POST /api_v1/targets/(str: target_name)/resources/
Upload a new top level resource, for instance a Project. This endpoint begins the Upload process. It returns a

50 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

link which can be used to the hit the Job Status endpoint to check in on the process.

Example request:

POST /api_v1/targets/OSF/resources/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"message": "The server is processing the request.",
"upload_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/upload/"

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

• presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either
update or ignore)

Form Parameters

• presqt-file – The Resource to Upload. Must be a BagIt file in ZIP format.

Status Codes

• 202 Accepted – Resource has begun uploading

• 400 Bad Request – The Target does not support the action resource_upload

• 400 Bad Request – presqt-destination-token missing in the request headers

• 400 Bad Request – The file, presqt-file, is not found in the body of the request

• 400 Bad Request – The file provided is not a zip file

• 400 Bad Request – The file provided is not in BagIt format

• 400 Bad Request – Checksums failed to validate

• 400 Bad Request – presqt-file-duplicate-action missing in the request
headers

• 400 Bad Request – presqt-email-opt-in missing in the request headers

• 400 Bad Request – Invalid file_duplicate_action header give. The options are
ignore or update

• 400 Bad Request – Repository is not formatted correctly. Multiple directories exist at the
top level

• 400 Bad Request – Repository is not formatted correctly. Files exist at the top level

• 400 Bad Request – User currently has processes in progress.

• 401 Unauthorized – Token is invalid

• 404 Not Found – Invalid Target name

7.8. Resource Upload Endpoints 51

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

7.8.2 Upload To Existing Resource

POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/
Upload a resource to an existing container. This endpoint begins the Upload process. It returns a link which
can be used to the hit the Job Status endpoint to check in on the process.

Example request:

POST /api_v1/targets/OSF/resources/1234/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"message": "The server is processing the request.",
"upload_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/upload/"

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

• presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either
update or ignore)

Form Parameters

• presqt-file – The Resource to Upload. Must be a BagIt file in ZIP format.

Status Codes

• 202 Accepted – Resource has begun uploading

• 400 Bad Request – The Target does not support the action resource_upload

• 400 Bad Request – presqt-destination-token missing in the request headers

• 400 Bad Request – presqt-email-opt-in missing in the request headers

• 400 Bad Request – The file, presqt-file, is not found in the body of the request

• 400 Bad Request – The file provided is not a zip file

• 400 Bad Request – The file provided is not in BagIt format

• 400 Bad Request – Checksums failed to validate

• 400 Bad Request – presqt-file-duplicate-action missing in the request
headers

• 400 Bad Request – Invalid file_duplicate_action header give. The options are
ignore or update

• 400 Bad Request – User currently has processes in progress.

• 401 Unauthorized – Token is invalid

• 403 Forbidden – User does not have access to this Resource

• 404 Not Found – Invalid Target name

52 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

• 410 Gone – Resource no longer available

7.8.3 Resource Upload Job Status

GET /api_v1/job_status/upload/
Check on the Upload Process for the given user.

Example request:

GET /api_v1/job_status/upload/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the upload is in progress:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": null,
"message": "Uploading files to OSF...",
"status": "in_progress",
"job_percentage": 0

}

Example response if upload finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": "200",
"message": "Upload successful.",
"status": "finished",
"failed_fixity": [],
"resources_ignored": [],
"resources_updated": [],
"job_percentage": 99

}

Example response if upload failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"job_percentage": 0,
"status": "failed",
"status_code": 404,
"message": "Resource with id 'bad_id' not found for this user."

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

Status Codes

7.8. Resource Upload Endpoints 53

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11

PresQT

• 200 OK – Upload has finished successfully

• 202 Accepted – Upload is being processed on the server

• 400 Bad Request – presqt-destination-token missing in the request headers

• 404 Not Found – Invalid Ticket Number

• 500 Internal Server Error – Upload failed on the server

PATCH /api_v1/job_status/upload/
Cancel the Upload Process for the given user. If the upload has finished before it can be cancelled it will
return the finished info from process_info.json. If the upload was successfully cancelled then it will return the
cancelled info from process_info.json.

Example request:

PATCH /api_v1/job_status/upload/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if upload cancelled successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": "499",
"message": "Upload was cancelled by the user"

}

Example response if upload finished before endpoint was able to cancel:

HTTP/1.1 406 OK
Content-Type: application/json

{
"status_code": "200",
"message": "Upload successful."

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

Status Codes

• 200 OK – Upload cancelled

• 406 Not Acceptable – Upload finished before cancellation

• 400 Bad Request – presqt-destination-token missing in the request headers

• 404 Not Found – Invalid Ticket Number

7.9 Resource Transfer Endpoints

Note: The Upload and Transfer endpoints are the same POST endpoints except the specification of where the source
resource is coming from.

54 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

For Uploads the resource will be a file provided as form-data

For Transfers the location of resource (source_target and resource_id) will be specified in the body as JSON

7.9.1 Transfer New Top Level Resource

POST /api_v1/targets/(str: target_name)/resources/
Transfer a resource from a source target to a destination target. Make the resource a new top level resource, for
instance a Project. This endpoint begins the Transfer process. It returns a link which can be used to the hit
the Job Status endpoint to check in on the process.

Example request:

POST /api_v1/targets/OSF/resources/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"source_target_name":"github",
"source_resource_id": "209372336",
"keywords": ["keywords", "to", "add"]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"message": "The server is processing the request.",
"transfer_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/transfer/"

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

• presqt-source-token – User’s Token for the source target

• presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either
update or ignore)

• presqt-keyword-action – Type of keyword action to perform (Either automatic,
manual or none)

JSON Parameters

• source_target_name (string) – The Source Target where the Resource
being Transferred exists

• source_resource_id (string) – The ID of the Resource to Transfer

Status Codes

• 202 Accepted – Resource has begun transferring

• 400 Bad Request – The Source Target does not support the action
resource_transfer_out

7.9. Resource Transfer Endpoints 55

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

PresQT

• 400 Bad Request – The Destination Target does not support the action
resource_transfer_in

• 400 Bad Request – presqt-source-token missing in the request headers

• 400 Bad Request – presqt-destination-token missing in the request headers

• 400 Bad Request – presqt-file-duplicate-action missing in the request
headers

• 400 Bad Request – presqt-email-opt-in missing in the request headers

• 400 Bad Request – Invalid file-duplicate-action header give. The options are
ignore or update

• 400 Bad Request – source_resource_id can’t be none or blank

• 400 Bad Request – source_resource_id was not found in the request body

• 400 Bad Request – source_target_name was not found in the request body

• 400 Bad Request – keywords was not found in the request body.

• 400 Bad Request – keywords must be in list format.

• 400 Bad Request – Source target does not allow transfer to the destination target

• 400 Bad Request – Destination target does not allow transfer to the source target

• 400 Bad Request – Invalid presqt-keyword-action header given. The options are
automatic, manual, or none

• 400 Bad Request – presqt-keyword-action missing in the request headers

• 400 Bad Request – User currently has processes in progress.

• 401 Unauthorized – Source Token is invalid

• 401 Unauthorized – Destination Token is invalid

• 403 Forbidden – User does not have access to the Resource to transfer

• 404 Not Found – Invalid Source Target name

• 404 Not Found – Invalid Destination Target name

• 410 Gone – Resource to transfer is no longer available

7.9.2 Transfer To Existing Resource

POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/
Transfer a resource from a source target to a destination target. Transfer to an existing resource. This endpoint
begins the Transfer process. It returns a link which can be used to the hit the Job Status endpoint to
check in on the process.

Example request:

POST /api_v1/targets/OSF/resources/1234/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"source_target_name":"github",

(continues on next page)

56 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11

PresQT

(continued from previous page)

"source_resource_id": "209372336",
"keywords": ["keywords", "to", "add"]

}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"message": "The server is processing the request.",
"transfer_job": "https://presqt-prod.crc.nd.edu/api_v1/job_status/transfer/"

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

• presqt-source-token – User’s Token for the source target

• presqt-file-duplicate-action – Action to be taken if a duplicate file is found (Either
update or ignore)

• presqt-keyword-action – Type of keyword action to perform (Either automatic,
manual, or none)

JSON Parameters

• source_target_name (string) – The Source Target where the Resource
being Transferred exists

• source_resource_id (string) – The ID of the Resource to Transfer

Status Codes

• 202 Accepted – Resource has begun transferring

• 400 Bad Request – The Source Target does not support the action
resource_transfer_out

• 400 Bad Request – The Destination Target does not support the action
resource_transfer_in

• 400 Bad Request – presqt-source-token missing in the request headers

• 400 Bad Request – presqt-destination-token missing in the request headers

• 400 Bad Request – presqt-file-duplicate-action missing in the request
headers

• 400 Bad Request – presqt-email-opt-in missing in the request headers

• 400 Bad Request – Invalid file_duplicate_action header give. The options are
ignore or update

• 400 Bad Request – source_resource_id can’t be none or blank

• 400 Bad Request – source_resource_id was not found in the request body

• 400 Bad Request – source_target_name was not found in the request body

• 400 Bad Request – keywords was not found in the request body.

• 400 Bad Request – keywords must be in list format.

7.9. Resource Transfer Endpoints 57

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

PresQT

• 400 Bad Request – Source target does not allow transfer to the destination target

• 400 Bad Request – Destination target does not allow transfer to the source target

• 400 Bad Request – Invalid presqt-keyword-action header given. The options are
automatic, manual or none

• 400 Bad Request – presqt-keyword-action missing in the request headers

• 400 Bad Request – User currently has processes in progress.

• 401 Unauthorized – Source Token is invalid

• 401 Unauthorized – Destination Token is invalid

• 403 Forbidden – User does not have access to the Resource to transfer

• 403 Forbidden – User does not have access to the Resource to transfer to

• 404 Not Found – Invalid Source Target name

• 404 Not Found – Invalid Destination Target name

• 410 Gone – Resource to transfer is no longer available

• 410 Gone – Resource to transfer to is longer available

7.9.3 Resource Transfer Job Status

GET /api_v1/job_status/transfer/
Check on the Transfer Process for the given user.

Example request:

GET /api_v1/job_status/transfer/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if transfer is in progress:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"status_code": null,
"message": "Creating PRESQT_FTS_METADATA...",
"job_percentage": 50

}

Example response if transfer finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": "200",
"message": "Transfer successful.",
"job_percentage": 99,
"failed_fixity": [

"/PrivateProject/README.md"
],

(continues on next page)

58 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11

PresQT

(continued from previous page)

"resources_ignored": [],
"resources_updated": [],
"enhanced_keywords": [

"EGG",
"DISORDERED SOLVENT",
"Electrostatic Gravity Gradiometer",
"animal house",
"aqua",
"Wasser",

],
"initial_keywords": [

"animals",
"eggs",
"water"

],
"source_resource_id": "209372336",
"destination_resource_id": "qadt3"

}

Example response if transfer failed:

HTTP/1.1 500 Internal Server Error
Content-Type: application/json

{
"status_code": 404,
"message": "The resource with id, 20938989898989872336, does not exist for

→˓this user.",
"job_percentage": 0,
"status": "failed"

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

• presqt-source-token – User’s Token for the source target

Status Codes

• 200 OK – Transfer has finished successfully

• 202 Accepted – Transfer is being processed on the server

• 400 Bad Request – presqt-destination-token missing in the request headers

• 400 Bad Request – presqt-source-token missing in the request headers

• 404 Not Found – Invalid Ticket Number

• 500 Internal Server Error – Transfer failed on the server

PATCH /api_v1/job_status/transfer/
Cancel the Transfer Process for the given user. If the transfer has finished before it can be cancelled it
will return the finished info from process_info.json. If the transfer was successfully cancelled then it will return
the cancelled info from process_info.json.

Example request:

7.9. Resource Transfer Endpoints 59

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

PresQT

PATCH /api_v1/job_status/transfer/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if transfer cancelled successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status_code": "499",
"message": "Transfer was cancelled by the user"

}

Example response if transfer finished before endpoint was able to cancel:

HTTP/1.1 406 OK
Content-Type: application/json

{
"status_code": "200",
"message": "Transfer successful."

}

Request Headers

• presqt-destination-token – User’s Token for the destination target

• presqt-source-token – User’s Token for the source target

Status Codes

• 200 OK – Transfer cancelled

• 406 Not Acceptable – Transfer finished before cancellation

• 400 Bad Request – presqt-destination-token missing in the request headers

• 400 Bad Request – presqt-source-token missing in the request headers

• 404 Not Found – Invalid Ticket Number

7.10 Keyword Enhancement Endpoints

7.10.1 Get a Resource’s Keywords And Keyword Enhancements

GET /api_v1/targets/(str: target_name)/resources/(str: resource_id)/keywords/
Retrieve a resource’s keywords that are both stored in the target and in the PresQT Metadata File (if one exists).
Send the keywords to a keyword enhancer. Return both the Target Keywords and Enhanced Keywords
in the payload.

Example request:

GET /api_v1/targets/OSF/resources/1234/keywords/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

60 Chapter 7. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

HTTP/1.1 200 OK
Content-Type: application/json

{
"keywords": [

"eggs",
"animal",
"water"

],
"enhanced_keywords": [

"animals",
"Animals",
"EGG",
"Electrostatic Gravity Gradiometer",
"water",
"Water",
"DISORDERED SOLVENT",
"aqua",
"Wasser",
"dihydrogen oxide",
"OXYGEN ATOM",
"oxidane",

],
"all_keywords": [

"animals",
"Animals",
"EGG",
"Electrostatic Gravity Gradiometer",
"water",
"Water",
"DISORDERED SOLVENT",
"aqua",
"Wasser",
"dihydrogen oxide",
"OXYGEN ATOM",
"oxidane",
"eggs",
"animal",
"water"

]
}

Request Headers

• presqt-source-token – User’s Token for the source target

Status Codes

• 200 OK – Keywords successfully fetched

• 400 Bad Request – The Source Target does not support the action keywords

• 400 Bad Request – The resource type does not support keywords

• 401 Unauthorized – Source Token is invalid

7.10. Keyword Enhancement Endpoints 61

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

PresQT

7.10.2 Upload Keywords to a Resource

POST /api_v1/targets/(str: target_name)/resources/(str: resource_id)/keywords/
Take a list of keywords and add them to the Resource’s keywords both in the target and in the PresQT FTS
Metadata file. The returned payload will contain both the new keywords added and the final full list of keywords
in the target.

Example request:

POST /api_v1/targets/OSF/resources/1234/keywords/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"keywords": ["cat", "water"]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"keywords_added": [

"feline",
"aqua",
"dihydrogen oxide",
"DISORDERED SOLVENT",
"EGG",
"Electrostatic Gravity Gradiometer",
"oxidane",
"OXYGEN ATOM",
"Wasser",
"Water"

],
"final_keywords": [

"feline",
"aqua",
"dihydrogen oxide",
"DISORDERED SOLVENT",
"EGG",
"eggs",
"Electrostatic Gravity Gradiometer",
"oxidane",
"OXYGEN ATOM",
"Wasser",
"water",
"Water"

]
}

Request Headers

• presqt-source-token – User’s Token for the source target

JSON Parameters

• keywords (array) – An array of the keywords to upload

62 Chapter 7. API Endpoints

PresQT

Status Codes

• 202 Accepted – Keywords successfully uploaded

• 400 Bad Request – The Source Target does not support the action keywords

• 400 Bad Request – The Source Target does not support the action
keywords_upload

• 400 Bad Request – The resource type does not support keywords

• 400 Bad Request – keywords is missing from the request body

• 400 Bad Request – keywords must be in list format

• 401 Unauthorized – Source Token is invalid

7.10. Keyword Enhancement Endpoints 63

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

PresQT

64 Chapter 7. API Endpoints

CHAPTER

EIGHT

WEB SERVICES

8.1 Fixity

8.1.1 Tools

• Python Hashlib Library

• BagIt Python Validation

8.1.2 PresQT Supported Hash Algorithms

The following is a master list of hash algorithms that are both supported by a target and supported by Python’s HashLib
library:

• sha256

• md5

Each individual target’s supported hash algorithms can be found in presqt/specs/targets.json

8.1.3 Resource Download Fixity

Fixity is checked during Resource Download by comparing the file hashes provided by the source target with
hashes that are generated after files are downloaded on to the server. If the provided hash and the calculated hash
match then fixity passes!

The download function will try and find a matching hash algorithm between the source target supported algorithms
and algorithms supported by the Python Hashlib library to use when generating hashes for files downloaded to the
server. If no hash algorithms match or if the source target does not provide file hashes then md5 is uses as a default. It
also counts this situation as fixity passing since we didn’t know what the original hash was.

Valid Hashes Provided + Fixity Passes Example:

{
"sha256": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"md5": "a4536efb47b26eaf509edfdaca442037"

}

will yield

65

PresQT

{
"hash_algorithm": "sha256",
"given_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"calculated_hash":

→˓"343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"fixity": true

}

Valid Hashes Provided + Fixity Fails Example:

{
"sha256": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"md5": "a4536efb47b26eaf509edfdaca442037"

}

will yield

{
"hash_algorithm": "sha256",
"given_hash": "343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"calculated_hash": "12345678",
"fixity": false

}

Blank Hashes Provided Example:

{
"sha256": null,
"md5": null

}

will yield

{
"hash_algorithm": "md5",
"given_hash": null,
"calculated_hash":

→˓"343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"fixity": true

}

Unknown Hashes Provided Example:

{
"unknown_hasher": "12345",
"special_hasher": "1234567"

}

will yield

{
"hash_algorithm": "md5",
"given_hash": null,
"calculated_hash":

→˓"343e249fdb0818a58edcc64663e1eb116843b4e1c4e74790ff331628593c02be",
"fixity": true

}

66 Chapter 8. Web Services

PresQT

8.1.4 Resource Upload Fixity

During the resource upload process, fixity is checked in two locations. First, when files are saved to the disk from the
request. Second, after files are uploaded to the target.

Fig. 1: Image 1: Where in the upload process fixity is checked

Fixity Check 1

Resources must be included in the POST request in BagIt format as a zip file. After unzipping the file and saving it
to the server we validate the bag using BagIt’s built in validator. If any files saved don’t match the manifest originally
given then the fixity has failed and the server will return an error.

Generate New Hashes If Necessary

We now know that the currently saved files are the same as what the user sent forward. Before uploading resources to
the target we will make sure that there is a dictionary of hashes available generated by a hash algorithm supported by
the target. If the target supports a hash algorithm provided by the resource’s ‘bag’ then we will simply use those. If
not, then we need to generate new hashes based on a target supported hash algorithm.

Fixity Check 2

After resources are uploaded to the target, we compare the resources’ hashes brought back from the target to the hashes
we captured before. If any hashes don’t match then fixity fails. Since the resources have already been uploaded we
simply capture which resources’ fixity fails and pass that along the response payload along with the message, ‘Upload
successful but fixity failed’.

8.1.5 Resource Transfer Fixity

Since the Transfer endpoint takes advantage of the Download and Upload endpoints, fixity is checked using all
methods already existing in those endpoints.

8.2 File Transfer Service (FTS) Metadata

PresQT keeps track of file history of resources being updated by PresQT by passing along an FTS Metadata file
with each PresQT action. The file is titled PRESQT_FTS_METADATA.json. Every time PresQT takes action on a
resource, the source details about the files moved are written to the metadata file.

8.2. File Transfer Service (FTS) Metadata 67

PresQT

Definition of PresQT FTS Metadata fields:

allKeywords ar-
ray

All Keywords added to this resource via PresQT.

actions ar-
ray

Array of PresQT actions that have taken place on the this project

id string ID of the PresQT action (uuid4). Created at the time metadata is written
actionDateTime string Date and time that the action took place
actionType string Type of action (Download, Upload, Transfer)
sourceTargetName string Name of the source target the action is taking place on
sourceUsername string Requesting user’s source target username
destinationTarget-
Name

string Name of the destination target the action is taking place on

destinationUser-
name

string Requesting user’s destination target username

keywords dict Keyword enhancements that took place during this action
* Fields found in this dictionaries

sourceKeyword-
sAdded*

ar-
ray

The source keywords added during this action
This includes keywords in the target keywords found in FTS metadata file

sourceKeyword-
sEnhanced*

ar-
ray

The new keyword enhancements added to the target

ontologies ar-
ray

Ontologies connected to the enhanced keywords added.

enhancer* str The enhancement service used to enhance the keywords
files ar-

ray
Array of files that were involved in the PresQT action

sourcePath string Path of the file at the source target
sourceHashes dict Object that contains the file hashes at the source target
title string Title of the file at the source target
extra dict Object that contains all extra metadata we can retrieve from the source target
failedFixityInfo ar-

ray
Array containing dictionaries of info on files that failed fixity check
** Fields found in this dictionaries

newGenerated-
Hash**

string PresQT generated hash of the file

algorithmUsed** string Hash Algorithm used for the newGeneratedHash
reasonFixity-
Failed**

string Reason fixity failed for the file

destinationPath string Path of the file at the destination target
destinationHashes dict Object that contains the file hashes at the destination target

Example of PresQT FTS Metadata generated by a transfer of a project from GitHub to OSF:

{
"allKeywords": ["cat", "dog", "feline", "doggo", "pupper"],
"actions": [

{
"id": "bc5a48dc-d1f9-46bd-9137-48fe4843df77",
"actionDateTime": "2019-11-12 15:45:45.309566+00:00",
"actionType": "resource_transfer_in",
"sourceTargetName": "github",
"sourceUsername": "github_username",
"destinationTargetName": "osf",
"destinationUsername": "osf_username",

(continues on next page)

68 Chapter 8. Web Services

PresQT

(continued from previous page)

"keywords": {
"sourceKeywordsAdded": ["cat", "dog"],
"sourceKeywordsEnhanced": ["feline", "doggo", "pupper"],
"ontologies": [

{
"keywords": [

"doggo",
"pupper"

],
"ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
"ontology_id": "CHEBI_153377",
"categories": [

"canine"
]

},
{

"keywords": [
"feline"

],
"ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
"ontology_id": "CHEBI_153377",
"categories": [

"felines"
]

},
],
"enhancer": "scigraph"

},
"files": {

"created": [
{

"destinationPath": "NewProject/osfstorage/funnyfunnyimages/
→˓Screen_Shot.png",

"destinationHashes": {
"md5": "3505a89c3cbb82873a107ae41f3997c3"

},
"failedFixityInfo": [

{
"NewGeneratedHash": "3505a89c3cbb82873a107ae41f3997c3

→˓",
"algorithmUsed": "md5",
"reasonFixityFailed": "Either a Source Hash was not

→˓provided or the source hash algorithm is not supported."
}

],
"title": "Screen_Shot.png",
"sourceHashes": {},
"sourcePath": "/NewProject/funnyfunnyimages/Screen_Shot.png",
"extra": {

"commit_hash": "211ef8db83612802aeea151a0e04badfe287bcb9",
"size": 731202,
"url": "https://api.github.com/repos/presqt-test-user/

→˓NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",
"html_url": "https://github.com/presqt-test-user/

→˓NewProject/blob/master/funnyfunnyimages/Screen_Shot.png",
"git_url": "https://api.github.com/repos/presqt-test-user/

→˓NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",
(continues on next page)

8.2. File Transfer Service (FTS) Metadata 69

PresQT

(continued from previous page)

"download_url": "https://raw.githubusercontent.com/presqt-
→˓test-user/NewProject/master/funnyfunnyimages/Screen_Shot.png",

"type": "file",
"_links": {

"self": "https://api.github.com/repos/presqt-test-
→˓user/NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",

"git": "https://api.github.com/repos/presqt-test-user/
→˓NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",

"html": "https://github.com/presqt-test-user/
→˓NewProject/blob/master/funnyfunnyimages/Screen_Shot.png"

}
}

}
],
"updated": [],
"ignored": []

}
}

]
}

Now if we download from OSF the same project that was just transferred, then PresQT FTS Metadata
would be:

{
"allKeywords": ["cat", "dog", "feline", "doggo", "pupper"],
"actions": [

{
"id": "bc5a48dc-d1f9-46bd-9137-48fe4843df77",
"actionDateTime": "2019-11-12 15:45:45.309566+00:00",
"actionType": "resource_transfer_in",
"sourceTargetName": "github",
"sourceUsername": "github_username",
"destinationTargetName": "osf",
"destinationUsername": "osf_username",
"keywords": {

"sourceKeywordsAdded": ["cat", "dog"],
"sourceKeywordsEnhanced": ["feline", "doggo"],
"ontologies": [

{
"keywords": [

"doggo",
"pupper"

],
"ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
"ontology_id": "CHEBI_153377",
"categories": [

"canine"
]

},
{

"keywords": [
"feline"

],
"ontology": "http://purl.obolibrary.org/obo/CHEBI_153377",
"ontology_id": "CHEBI_153377",

(continues on next page)

70 Chapter 8. Web Services

PresQT

(continued from previous page)

"categories": [
"felines"

]
},

],
"enhancer": "scigraph"

},
"files": {

"created": [
{

"destinationPath": "NewProject/osfstorage/funnyfunnyimages/
→˓Screen_Shot.png",

"destinationHashes": {
"md5": "3505a89c3cbb82873a107ae41f3997c3"

},
"failedFixityInfo": [

{
"NewGeneratedHash": "3505a89c3cbb82873a107ae41f3997c3

→˓",
"algorithmUsed": "md5",
"reasonFixityFailed": "Either a Source Hash was not

→˓provided or the source hash algorithm is not supported."
}

],
"title": "Screen_Shot.png",
"sourceHashes": {},
"sourcePath": "/NewProject/funnyfunnyimages/Screen_Shot",
"extra": {

"commit_hash": "211ef8db83612802aeea151a0e04badfe287bcb9",
"size": 731202,
"url": "https://api.github.com/repos/presqt-test-user/

→˓NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",
"html_url": "https://github.com/presqt-test-user/

→˓NewProject/blob/master/funnyfunnyimages/Screen_Shot.png",
"git_url": "https://api.github.com/repos/presqt-test-user/

→˓NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",
"download_url": "https://raw.githubusercontent.com/presqt-

→˓test-user/NewProject/master/funnyfunnyimages/Screen_Shot.png",
"type": "file",
"_links": {

"self": "https://api.github.com/repos/presqt-test-
→˓user/NewProject/contents/funnyfunnyimages/Screen_Shot.png?ref=master",

"git": "https://api.github.com/repos/presqt-test-user/
→˓NewProject/git/blobs/211ef8db83612802aeea151a0e04badfe287bcb9",

"html": "https://github.com/presqt-test-user/
→˓NewProject/blob/master/funnyfunnyimages/Screen_Shot.png"

}
}

}
],
"updated": [],
"ignored": []

}
},
{

"id": "bc5a48dc-d1f9-46bd-9137-48fe4843df77",
"actionDateTime": "2019-11-12 15:45:45.309566+00:00",

(continues on next page)

8.2. File Transfer Service (FTS) Metadata 71

PresQT

(continued from previous page)

"actionType": "resource_download",
"sourceTargetName": "osf",
"sourceUsername": "osf_username",
"destinationTargetName": "Local Machine",
"destinationUsername": null,
"keywords": {},
"files": {

"created": [
{

"destinationPath": "/NewProject/osfstorage/funnyfunnyimages/
→˓Screen_Shot.png",

"destinationHashes": {},
"failedFixityInfo": [],
"title": "Screen_Shot.png",
"sourceHashes": {

"sha256":
→˓"6d33275234b28d77348e4e1049f58b95a485a7a441684a9eb9175d01c7f141ea",

"md5": "3505a89c3cbb82873a107ae41f3997c3"
},
"sourcePath": "/NewProject/osfstorage/funnyfunnyimages/Screen_

→˓Shot.png",
"extra": {

"id": "5dcc215848a1d9000cd0a3fb",
"parent_project_id": "2bw9j",
"endpoint": "https://api.osf.io/v2/files/

→˓5dcc215848a1d9000cd0a3fb/",
"download_url": "https://files.osf.io/v2/resources/2bw9j/

→˓providers/osfstorage/5dcc215848a1d9000cd0a3fb",
"upload_url": "https://files.osf.io/v2/resources/2bw9j/

→˓providers/osfstorage/5dcc215848a1d9000cd0a3fb",
"delete_url": "https://files.osf.io/v2/resources/2bw9j/

→˓providers/osfstorage/5dcc215848a1d9000cd0a3fb",
"last_touched": null,
"date_modified": "2019-11-13T15:29:29.043502Z",
"current_version": 1,
"date_created": "2019-11-13T15:29:29.043502Z",
"provider": "osfstorage",
"path": "/5dcc215848a1d9000cd0a3fb",
"current_user_can_comment": true,
"guid": null,
"checkout": null,
"tags": [],
"size": 731202

}
}

],
"updated": [],
"ignored": []

}
}

]
}

8.2.1 Metadata Location When Downloading

The PresQT FTS Metadata file will be written to the highest level possible of the resource being downloaded.

72 Chapter 8. Web Services

PresQT

8.2.2 Metadata Location When Uploading or Transferring

The PresQT FTS Metadata file will be written to the highest level possible of the destination project. Since this
possible level may vary for any target, we leave it up to the target to handle this when they integrate with Upload.

8.2.3 Existing Metadata

If a valid PresQT FTS Metadata file is found at the top level of the resource being affected by the action then we
will add a new action to this existing metadata file.

If an invalid PresQT FTS Metadata file is found at the top level of the resource being affected by the action then
we will rename the invalid metadata file to INVALID_PRESQT_FTS_METADATA.json and then we will create a
new valid metadata file with the current actions metadata.

8.3 Keyword Assignment

8.3.1 Keyword Enhancers

• SciGraph http://ec-scigraph.sdsc.edu:9000/scigraph/docs/

8.3.2 Keyword Difference Between Targets

Each target holds keywords in different attributes. Some may have keywords in multiple attributes. The following
table outlines the keyword attributes for each target.

Targets Keyword Attributes
OSF [Tags]
Github [Topics]
Gitlab [Tag List]
CurateND [Subjects]
Zenodo [Keywords]
FigShare [Tags]

8.3.3 Keyword Assignment During Transfer

When transferring a resource you have the option of either manual or automatic keyword enhancement. Manual
enhancement will only add source keywords and the keywords provided in the request body. Automatic will add all
enhancements including any provided in the request body. These can be set by setting presqt-keyword-action
in the headers to either manual or automatic

Manual Keywords

If presqt-keyword-action is manual then PresQT will only add keywords found in the source target and
keywords given in the body of the request. This means you need to get the possible enhancements before initiating a
transfer.

8.3. Keyword Assignment 73

http://ec-scigraph.sdsc.edu:9000/scigraph/docs/

PresQT

Automatic Keywords

If presqt-keyword-action is automatic then PresQT will add keywords found in the source, keywords
given in the request body, and any keyword enhancements found during the transfer process. The following steps
occur during the transfer in this case:

1. Fetch all source keywords both in the target and in the FTS metadata file for the transferred resource.

2. Get enhancements with the given enhancer (Defaults to SciGraph for now).

3. Upload keyword enhancements to the Source Target and Destination Target.

4. Add the keyword enhancements to the FTS Metadata file that gets written to the Destination Target
during the transfer.

5. Add the keyword enhancements to the FTS Metadata file that gets written to the Source Target during the
transfer.

Fig. 2: Image 2: Lifecycle of Keyword Enhancement during a transfer

Fig. 3: Image 3: Practical Example of Keyword Enhancement during a transfer

74 Chapter 8. Web Services

PresQT

8.3.4 Keyword Assignment Service Endpoint

Keyword Enhancement can be done without transferring.

1. Use the Keyword Enhancement GET endpoint to fetch the keywords from the resource.

2. Pass the keywords you want to enhance to the Keyword Enhancement POST endpoint.

3. Enhanced keywords will get uploaded to the target and a new action will get written to the FTS metadata file.

Fig. 4: Image 4: Lifecycle of a Keyword Enhancement Service

8.4 Preservation Quality

IN PROGRESS

8.4. Preservation Quality 75

PresQT

Fig. 5: Image 5: Practical Example of a Keywords Enhancement Service

76 Chapter 8. Web Services

CHAPTER

NINE

SERVICES

A service is a unique target integration that is not accessible via the normal API endpoints. Typically, the point of a
service is to take action on a resource (emulate, annotate, etc.) rather than simply storing it.

9.1 EaaSI (Emulation-as-a-Service Infrastructure) Service

PresQT takes advantage of EaaSI’s ability to interpret resources and suggest a relevant emulation environment. Our
PresQT API calls use EaaSI’s Proposal API to send resources to EaaSI.

9.1.1 Step 1: Download the Resource

PresQT is able to use the existing download endpoint to fetch a Target’s resource to a PresQT server.

9.1.2 Step 2: Start a proposal task on an EaaSI server

Then, using the ticket number created from the PresQT download task, a POST request can be made to PresQT to
send EaaSI a url where the downloaded resource can be fetched. During this POST request we write a one time use
token to the downloaded resource’s process_info.json file. The URL we send to EaaSI to fetch the PresQT resource
has a query parameter with this token. This EaaSI download endpoint is for EaaSI use only.

9.1.3 Step 3: Get proposal status from EaaSI

We then have a GET endpoint that makes a request to EaaSI to find the progress of the Proposal Task. If the task is
complete then we return the url for the suggested emulation environment. Otherwise, we return a 202 status and let
the user know the proposal task is still in progress.

9.2 FAIR Evaluator Service

PresQT takes advantage of FAIRshare’s prebuilt maturity indicator tests. Our PresQT API calls use an approved
collection of tests identified by the PI’s and community.

9.3 FAIRshake Assessment Service

PresQT takes advantage of FAIRshake’s manual assessment functionality to allow users to assess the FAIRness of
their research projects.

77

https://www.softwarepreservationnetwork.org/eaasi//
https://openslx.gitlab.io/eaas-api-docs/environment-proposer/environment-proposer/resource_EnvironmentProposerAPI.html
https://presqt.readthedocs.io/en/latest/api_endpoints.html#resource-download-endpoints
https://presqt.readthedocs.io/en/latest/service_endpoints.html#submit-eaasi-proposal
https://presqt.readthedocs.io/en/latest/service_endpoints.html#eaasi-download
https://presqt.readthedocs.io/en/latest/service_endpoints.html#get-eaasi-proposal
https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/
https://fairsharing.github.io/FAIR-Evaluator-FrontEnd/#!/collections/16/
https://fairshake.cloud//

PresQT

Fig. 1: Image 1: Workflow of getting an EaaSI Emulation Environment of a given resource

78 Chapter 9. Services

CHAPTER

TEN

SERVICE ENDPOINTS

10.1 Service Endpoints

10.1.1 Service Collection

GET /api_v1/services/
Retrieve details of all Services.

Example request:

GET /api_v1/services/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "eaasi",
"readable_name": "EaaSI",
"links": [

{
"name": "Detail",
"link": "https://presqt-prod.crc.nd.edu/api_v1/services/eaasi/",
"method": "GET"

}
]

}
]

Status Codes

• 200 OK – Services successfully retrieved

10.1.2 Service Details

GET /api_v1/services/(str: service_name)/
Retrieve details of a single Service.

Example request:

79

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

PresQT

GET /api_v1/services/eaasi/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "eaasi",
"readable_name": "EaaSI",
"links": [

{
"name": "Proposals",
"link": "https://presqt-prod.crc.nd.edu/api_v1/services/eaasi/

→˓proposals/",
"method": "POST"

}
]

}

Status Codes

• 200 OK – Service successfully retrieved

• 404 Not Found – Invalid Service name

10.2 Keyword Enhancement

10.2.1 Get Keyword Enhancements From A List Of Keywords

GET /api_v1/services/presqt/keyword_enhancement/
Take a list of keywords and run them through the keyword enhancement service. The returned payload will
contain both the new keywords added and the final full list of keywords.

There are separate endpoints for keyword enhancements through Targets. See the API Endpoint documentation
to learn more.

Example request:

POST /api_v1/services/presqt/keyword_enhancement/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"keywords": ["cat", "water"]
}

Example response:

HTTP/1.1 202 Accepted
Content-Type: application/json

(continues on next page)

80 Chapter 10. Service Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

(continued from previous page)

{
"keywords_added": [

"feline",
"aqua",
"dihydrogen oxide",
"DISORDERED SOLVENT",
"EGG",
"Electrostatic Gravity Gradiometer",
"oxidane",
"OXYGEN ATOM",
"Wasser",
"Water"

],
"final_keywords": [

"feline",
"aqua",
"dihydrogen oxide",
"DISORDERED SOLVENT",
"EGG",
"eggs",
"Electrostatic Gravity Gradiometer",
"oxidane",
"OXYGEN ATOM",
"Wasser",
"water",
"Water"

]
}

JSON Parameters

• keywords (array) – An array of the keywords to upload

Status Codes

• 202 Accepted – Keywords successfully uploaded

10.3 EaaSI Endpoints

10.3.1 Submit EaaSI Proposal

POST /api_v1/services/eaasi/proposals/
Send a file from a PresQT server to start a proposal task on an EaaSI server.

Example request:

POST /api_v1/services/eaasi/proposals/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"ticket_number":"39e56297-04cc-440a-b73e-9788b220f12b"
}

10.3. EaaSI Endpoints 81

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3

PresQT

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "19",
"message": "Proposal task was submitted."
"proposal_link": "https://presqt-prod.crc.nd.edu/api_v1/services/eaasi/1/"

}

Status Codes

• 200 OK – Proposal successfully started.

• 400 Bad Request – ‘presqt-source-token’ missing in request headers

• 400 Bad Request – A download does not exist for this user on the server.

• 404 Not Found – Invalid ticket number

• 404 Not Found – A resource_download does not exist for this user on the server.

10.3.2 Get EaaSI Proposal

GET /api_v1/services/eaasi/proposals/(str: proposal_id)/
Check on the state of the EaaSI Proposal Task on the EaaSI server.

Example request:

GET /api_v1/services/eaasi/proposals/12/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response if the proposal task is not finished:

HTTP/1.1 202 Accepted
Content-Type: application/json

{
"message": "Proposal task is still in progress."

}

Example response if the proposal task is finished successfully:

HTTP/1.1 200 OK
Content-Type: application/json

{
"image_url": "https://eaasi-portal.emulation.cloud:443/blobstore/api/v1/blobs/

→˓imagebuilder-outputs/2ca330d6-23f7-4f0a-943a-e3984b29642c?access_token=default",
"image_type": "cdrom",
"environments": [],
"suggested": {}

}

Status Codes

• 200 OK – Proposal Task has finished successfully

82 Chapter 10. Service Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

PresQT

• 202 Accepted – Proposal Task is being processed on the EaaSI server

• 404 Not Found – Invalid Proposal ID

10.3.3 EaaSI Download

GET /api_v1/services/eaasi/(str: ticket_number)/?eaasi_token=(str: eaasi_token)
EaaSI specific download endpoint that exposes a resource on a PresQT server to download.

Example request:

GET /api_v1/services/eeasi/download/39e56297-04cc-440a-b73e/?eaasi=E9luKQU9Ywe5j
→˓HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/zip

Payload is ZIP file

Status Codes

• 200 OK – File successfully retrieved.

• 400 Bad Request – eaasi_token not found as query parameter.

• 401 Unauthorized – eaasi_token does not match the ‘eaasi_token’ for this server
process.

• 404 Not Found – File unavailable.

• 404 Not Found – Invalid ticket number.

• 404 Not Found – A resource_download does not exist for this user on the server.

10.4 FAIRshare Endpoints

10.4.1 Get FAIRshare Tests

GET /api_v1/services/fairshare/evaluator/
Get a list of tests from FAIRshare that are currently supported by PresQT.

Example request:

GET /api_v1/services/fairshare/evaluator/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

(continues on next page)

10.4. FAIRshare Endpoints 83

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

PresQT

(continued from previous page)

[
{

"test_name": "FAIR Metrics Gen2- Unique Identifier "
"description": "Metric to test if the metadata resource has a unique

→˓identifier. This is done by comparing the GUID to the patterns (by regexp) of
→˓known GUID schemas such as URLs and DOIs. Known schema are registered in
→˓FAIRSharing (https://fairsharing.org/standards/?q=&selected_facets=type_
→˓exact:identifier%20schema)",

"test_id": 1
},
{

"test_name": "FAIR Metrics Gen2 - Identifier Persistence "
"description": "Metric to test if the unique identifier of the metadata

→˓resource is likely to be persistent. Known schema are registered in FAIRSharing
→˓(https://fairsharing.org/standards/?q=&selected_facets=type_exact:identifier
→˓%20schema). For URLs that don't follow a schema in FAIRSharing we test known
→˓URL persistence schemas (purl, oclc, fdlp, purlz, w3id, ark).",

"test_id": 2
}...

]

Status Codes

• 200 OK – Tests returned successfully

10.4.2 POST FAIRshare Evaluator

POST /api_v1/services/fairshare/evaluator/
Submit a FAIRshare Evaluation request with a doi and list of test ids.

Example request:

POST /api_v1/services/fairshare/evaluator/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"resource_id":"10.17605/OSF.IO/EGGS12",
"tests": [1, 2]

}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"metric_link": "https://w3id.org/FAIR_Evaluator/metrics/1",
"test_name": "FAIR Metrics Gen2- Unique Identifier ",
"description": "Metric to test if the metadata resource has a unique

→˓identifier. This is done by comparing the GUID to the patterns (by regexp) of
→˓known GUID schemas such as URLs and DOIs. Known schema are registered in
→˓FAIRSharing (https://fairsharing.org/standards/?q=&selected_facets=type_
→˓exact:identifier%20schema)",

(continues on next page)

84 Chapter 10. Service Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

PresQT

(continued from previous page)

"successes": [
"Found an identifier of type 'doi'"

],
"failures": [],
"warnings": []

},
{

"metric_link": "https://w3id.org/FAIR_Evaluator/metrics/2",
"test_name": "FAIR Metrics Gen2 - Identifier Persistence ",
"description": "Metric to test if the unique identifier of the metadata

→˓resource is likely to be persistent. Known schema are registered in FAIRSharing
→˓(https://fairsharing.org/standards/?q=&selected_facets=type_exact:identifier
→˓%20schema). For URLs that don't follow a schema in FAIRSharing we test known
→˓URL persistence schemas (purl, oclc, fdlp, purlz, w3id, ark).",

"successes": [
"The GUID of the metadata is a doi, which is known to be persistent."

],
"failures": [],
"warnings": []

}
]

Status Codes

• 200 OK – Evaluation completed successfully.

• 400 Bad Request – ‘resource_id’ missing in the request body.

• 400 Bad Request – ‘tests’ missing in the request body.

• 400 Bad Request – ‘tests’ must be in list format.

• 400 Bad Request – At least one test is required. Options are: [.]

• 400 Bad Request – ‘eggs’ not a valid test name. Options are: [.]

• 503 Service Unavailable – FAIRshare returned a <status_code> error trying to process
the request

10.5 FAIRshake Endpoints

10.5.1 Get FAIRshake Rubrics

GET /api_v1/services/fairshake/rubric/{str: rubric_id}/
Get a list of merics from FAIRshake that are associated with the rubric id.

Example request:

GET /api_v1/services/fairshake/rubric/9/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example response:

10.5. FAIRshake Endpoints 85

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

PresQT

HTTP/1.1 200 OK
Content-Type: application/json

{
"metrics": {

"30": "The structure of the repository permits efficient discovery of
→˓data and metadata by end users.",

"31": "The repository uses a standardized protocol to permit access by
→˓users.",

"32": "The repository provides contact information for staff to enable
→˓users with questions or suggestions to interact with repository experts.",

"33": "Tools that can be used to analyze each dataset are listed on the
→˓corresponding dataset pages.",

"34": "The repository maintains licenses to manage data access and use.",
"35": "The repository hosts data and metadata according to a set of

→˓defined criteria to ensure that the resources provided are consistent with the
→˓intent of the repository.",

"36": "The repository provides documentation for each resource to permit
→˓its complete and accurate citation.",

"37": "A description of the methods used to acquire the data is provided.
→˓",

"38": "Version information is provided for each resource, where available.
→˓"

},
"answer_options": {

"0.0": "no",
"0.25": "nobut",
"0.5": "maybe",
"0.75": "yesbut",
"1.0": "yes"

}
}

Status Codes

• 200 OK – Rubric returned successfully

• 400 Bad Request – ‘egg’ is not a valid rubric id. Choices are: [‘7’, ‘8’, ‘9’]

10.5.2 POST FAIRshake Assessment

POST /api_v1/services/fairshake/rubric/{str: rubric_id}/
Submit a FAIRshake Assessment request for the given rubric.

Example request:

POST /api_v1/services/fairshake/rubric/9/ HTTP/1.1
Host: presqt-prod.crc.nd.edu
Accept: application/json

Example body json:
{

"project_url": "https://github.com/ndlib/presqt",
"project_title": "presqt",
"rubric_answers": {

"30": "0.0",

(continues on next page)

86 Chapter 10. Service Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

PresQT

(continued from previous page)

"31": "0.5",
"32": "0.0",
"33": "1.0",
"34": "1.0",
"35": "1.0",
"36": "0.5",
"37": "0.0",
"38": "0.0"

}
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"digital_object_id": 166055,
"rubric_responses": [

{
"metric": "The structure of the repository permits efficient

→˓discovery of data and metadata by end users.",
"score": "0.0",
"score_explanation": "no"

}...
]

}

Status Codes

• 200 OK – Assessment completed successfully.

• 400 Bad Request – ‘eggs’ is not a valid rubric id. Options are: [‘7’, ‘8’, ‘9’]

• 400 Bad Request – ‘project_url’ missing in POST body.

• 400 Bad Request – ‘project_title’ missing in POST body.

• 400 Bad Request – ‘rubric_answers’ missing in POST body.

• 400 Bad Request – ‘rubric_answers’ must be an object with the metric id’s as the keys
and answer values as the values.

• 400 Bad Request – Missing response for metric ‘30’. Required metrics are: [‘30’, ‘31’,
‘32’]

• 400 Bad Request – ‘egg’ is not a valid answer. Options are: [‘0.0’, ‘0.25’, ‘0.5’, ‘0.75’,
‘1.0’]

• 400 Bad Request – ‘egg’ is not a valid metric. Required metrics are: [‘30’, ‘31’, ‘32’]

10.5. FAIRshake Endpoints 87

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

PresQT

88 Chapter 10. Service Endpoints

CHAPTER

ELEVEN

RESOURCES

This page contains all relevant resources used during development

11.1 Links

•

•

•

•

•

•

11.2 Example BagIts

11.2.1 BagIt Zip files

Since the upload endpoint requires a BagIt file in zip format here are some pre-made zip files to test the upload
endpoint.

#1 Valid BagIt For Top Level Container w/Folder

#2 Valid BagIt For Top Level Container w/File

#3 Valid BagIt For Existing Container w/Single File

#4 Valid BagIt For Existing Container w/Folders & Files

#5 Invalid BagIt - Bad Manifest

#6 Invalid BagIt - Missing File

#7 Invalid BagIt - Unknown File

11.2.2 Example Workflow

The following are instructions on how the BagIt files above can be used to test the Upload endpoint:

1. Make a POST to https://presqt-prod.crc.nd.edu/api_v1/targets/osf/resources/
with BagIt #2 to see a new top level container created.

89

PresQT

2. Get the id of the new container and make a POST to https://presqt-prod.crc.nd.edu/api_v1/
targets/osf/resources/{resource_id}/ with BagIt #3 and with the ‘presqt-file-duplicate-action’
set to ‘ignore’ to see that the duplicate file is found and it’s contents are different but the file is updated.

3. Make the same request as 2 but set the header ‘presqt-file-duplicate-action’ to ‘update’ to see the file updated.

4. With the same container id make a POST request to https://presqt-prod.crc.nd.edu/api_v1/
targets/osf/resources/{resource_id}/ with BagIt #4 to see new files and folders added to the
top level container.

5. A POST request with BagIts 5-7 should return an error with nothing being uploaded.

90 Chapter 11. Resources

CHAPTER

TWELVE

QA TESTING

Be sure to use the table of contents shown here to help navigate the instructions

to go to the testing site.

91

PresQT

12.1 Resources

We use the term resources for all content such as files, folders, projects, repos, items, etc. It’s a catch all term since
different websites name their content differently.

12.2 BagIt Tool

BagIt is a hierarchical filesystem format for storing and transferring digital content. PresQT expects all files Uploaded
to be zipped files in BagIt format. All downloads from PresQT come in BagIt format as well. PresQT has a tool that
will take a zipped file and return it to you in BagIt format.

12.3 Getting Authorization Tokens From Partner Sites

An Authorization Token is a unique identifier for a user requesting access to a service.

You can for instructions on how to get authorization tokens for each target.

12.4 Test Files

Here are some pre-made ZIP files that are in BagIt format that can be downloaded for use with PresQT.

presqt_Images.zip

presqt_MediaFiles.zip

presqt_TextFiles.zip

presqt_MixedFileTypes.zip

92 Chapter 12. QA Testing

PresQT

12.5 Known Bugs And Issues

• None as of this writing

12.6 Testing Instructions

12.6.1 Login To Targets From PresQT Demo UI

1. Click on any Target icon under ‘Available Connections’ to pop open a login window.

2. Copy your Authorization Token for the target and press Connect

3. Resources associated with this token will appear on the left side.

4. You can log out of the target and use a different token by pressing the button next to the resources header.

5. To log into a different target simply repeat the process with a different target icon. Once logged in you can switch
between targets without having to provide your key.

12.6.2 Navigate and Searching The Resource Collection

to go to the testing site.

1. After logging in you can navigate through your Resource Collection by clicking on the folders and files
on the left.

2. Clicking on a resource shows you the Resource Details on the right.

12.5. Known Bugs And Issues 93

PresQT

94 Chapter 12. QA Testing

PresQT

3. Searching for public resources can be accomplished by selecting a search type and then pressing the search
icon. Public resources will be shown in the Resource Collection. 4. You can get back to your resources by
pressing the refresh button.

12.6.3 Resource Details And Actions

1. Once you click on a resource you will get its details and buttons for each action available for this resource. If the
button is disabled then that action isn’t available for that resource.

12.6.4 Resource Download

to go to the testing site.

12.6. Testing Instructions 95

PresQT

1. To download a resource, first select the resource in the resource collection and then click the Download
action button in the details section.

2. A modal will pop open providing you with transaction details. Click on the Download button to start the download.

3. Once the download is complete, the modal will provide you with details about how the download process went.

4. All downloads come in BagIt format. After the download is complete, unzip the file, and you will see BagIt
specification files. The data you requested to download will reside in the data folder.

12.6.5 Resource Upload

to go to the testing site.

12.6.6 Upload As A New Project

1. To upload to the target as a new project click the Create New Project button above the resource
collection.

2. A modal will pop open with an upload stepper. First select the file you’d like to upload. The file must be a
zip file who’s contents are in valid BagIt format.

3. Next, the modal will display transaction details. Click Upload File to begin the upload process.

4. Once the upload is completed, the modal will provide you with details about how the upload process went.

5. You should also see the new uploaded resources appear in the resource collection.

96 Chapter 12. QA Testing

PresQT

12.6. Testing Instructions 97

PresQT

98 Chapter 12. QA Testing

PresQT

12.6. Testing Instructions 99

PresQT

12.6.7 Upload To An Existing Resource

1. To upload a resource, first select the resource in the resource collection and then click the Upload action
button in the details section.

2. A modal will pop open with an upload stepper. First select the file you’d like to upload. The file must be a
zip file who’s contents are in valid BagIt format.

3. Select how you want PresQT to handle any duplicate files it finds existing in the resource already. Ignore will
simply ignore the duplicate. Update will update the existing file with the new uploaded file’s contents if they differ.

4. Next, the modal will display transaction details. Click Upload File to begin the upload process.

5. Once the upload is completed, the modal will provide you with details about how the upload process went.

6. You should also see the new uploaded resources appear in the resource collection.

12.6.8 Resource Transfer

to go to the testing site.

100 Chapter 12. QA Testing

PresQT

12.6. Testing Instructions 101

PresQT

1. To transfer a resource to another target, first select the resource in the resource collection and then click
the Transfer button in the details section.

2. A modal will pop open with a transfer stepper. First, select the target you want to transfer to and
press the Next button.

3. Input your token for the target you selected and press the Next button.

4. Select the resource you want to transfer to. Don’t select any resource if you want to create a new project. Press
Next once you have made your selection.

5. Select how you want PresQT to handle any duplicate files it finds existing in the resource already. Ignore will
simply ignore the duplicate. Update will update the existing file with the new transferred file’s contents if they differ.
Press the Next button once you’ve made your selection. If you are making a new project then just press Next.

6. Next, the modal will display transaction details. Click Transfer File to begin the transfer process.

7. Once the transfer is completed, the modal will provide you with details about how the transfer process went.

102 Chapter 12. QA Testing

PresQT

12.6. Testing Instructions 103

PresQT

104 Chapter 12. QA Testing

PresQT

8. You should also see the new transferred resources appear in the modal’s resource collection on the
right.

12.7 Verifying Fixity

Fixity means the assurance that a digital file has remained unchanged. We determine file fixity at every step along
PresQT actions. More details about how PresQT handles fixity can be found Here.

12.7.1 Download

All downloads come with a file with detailed fixity information named fixity_info.json. This file has an entry
for every file involved in the download including each file’s checksum hash at the Source Target and the hash calculated
on the PresQT servers before sent to the browser for download. To verify fixity remains, the user must calculate the
files’ hashes on their local machine and compare it to the hashes provided.

12.7. Verifying Fixity 105

https://presqt.readthedocs.io/en/latest/web_services.html#fixity

PresQT

12.7.2 Upload

Fixity during upload can be determined by inspecting the PRESQT_FTS_METADATA.json file included with every
upload. The attribute failedFixityInfo in this file will contain the details if the file being uploaded has failed
fixity.

12.7.3 Transfer

Fixity during Transfer can be determined the same as Upload by inspecting the PRESQT_FTS_METADATA.
json file in the destination target.

12.8 Verifying Keyword Enhancement

See Here for Keyword Enhancement details.

12.8.1 Keyword Enhancement As A Service

Keyword Enhancement as a service will write a new entry to the PRESQT_FTS_METADATA.json file in the target.
The action entry for keyword enhancement will say exactly which keywords were added during this enhancement.

12.8.2 Keyword Enhancement During Transfer

Keyword Enhancement during a transfer will work similarly to Keyword Enhancement As A Service. The
difference is, for the destination target, the details of keyword enhancement will be located in the transfer action entry
instead of there being a new action entry for keyword enhancement.

106 Chapter 12. QA Testing

https://presqt.readthedocs.io/en/latest/web_services.html#keyword-assignment

PresQT

12.9 Services

to go to the testing site.

12.9.1 Send a Proposal to EaaSI

1. To send a resource to EaaSI, first select the resource in the resource collection and then click the
Services action button in the details section. A drop down menu will appear from where you can select EaaSI.

2. A modal will pop open with an EaaSI stepper. First read the proposal and ensure the information is correct.
Once you have verified that this is what you’d like to do, press the Send button.

3. A spinner will keep you informed of where in the process the request is, whether that be on the PresQT server or

12.9. Services 107

PresQT

on EaaSI’s.

4. Once the upload is completed, the modal will provide you with details about how the process went. There will also
be a link for you to download the EaaSI created image.

5. You can now open the image and run it however you please. Note: At this point in time, EaaSI’s server is only
returning cd-rom images for us during testing. The environments will be changed to accurately take into account the
files contained within the project as development continues.

12.9.2 FAIRshare Evaluator Service

1. To initiate a FAIRshare evaluation, first select the resource in the resource collection and then click
the Services action button in the details section. A drop down menu will appear from where you can select
FAIRshare.

2. A modal will pop open with a FAIRshare Evaluator Service stepper. First read the information and
ensure the information is correct. Once you have verified that this is what you’d like to do, select the tests you would
like to run.

3. Once you have selected the tests you’d like to run, you can choose to opt in for email notifications. When you are
ready to run the tests, press the Evaluate button.

4. A spinner will let you know that FAIRshare is processing the request. This may take awhile.

5. Once the process is complete, the results will be displayed in a drop down format to be reviewed.

108 Chapter 12. QA Testing

PresQT

12.9. Services 109

PresQT

110 Chapter 12. QA Testing

PresQT

12.9. Services 111

PresQT

112 Chapter 12. QA Testing

CHAPTER

THIRTEEN

OTHER INTEGRATIONS

13.1 Whole Tale Integration Proposal

Whole Tale (http://www.wholetale.org) is a platform for the creation, publication, and re-execution of reproducible
computational artifacts. Researchers can create new tales that contain the code, data, workflow, and information about
the computational environment required to reproduce their analysis. Tales have basic metadata including authors, title,
keywords, description, and related identifiers (cited derived from). Tales can be published to archival repositories
including DataONE network members and Zenodo.

Whole Tale is an integration partner for the PresQT project. As part of the integration testing process, we explored
two different use cases:

• Publish Tales from the WT platform to Zenodo and CurateND using the PresQT APIs

• Import an OSF project into WT using the PresQT APIs

BagIt Serialization

Tales are exported as BDBag-compatible bags with the following structure:

5e696df5f1c291f11ae9e1a8/
README.md <-- Top-level readme (Tag file)
bagit.txt
bag-info.txt
fetch.txt <-- Fetch file
manifest-md5.txt
manifest-sha256.txt
run-local.sh <-- Script to run Tale locally (Tag file)
tagmanifest-md5.txt
tagmanifest-sha256.txt
data/
workspace/ <-- Tale workspace (user code, data, etc)

environment.yml
index.ipynb

LICENSE <-- Tale license (Tag file)
metadata/ <-- Tale metadata (Tag directory)

environment.json
manifest.json

The Tale bag is not currently compatible with PresQT, since PresQT currently requires a single top-level folder in the
payload representing the project. The folder name is used as the dataset title when publishing to a target. Since the
Tale bag has a separate structure, one option is to double-bag. In the following example, the above Tale is zipped and
bagged:

113

http://www.wholetale.org

PresQT

presqt_bag/
bagit.txt
bag-info.txt
manifest-md5.txt
manifest-sha256.txt
tagmanifest-md5.txt
tagmanifest-sha256.txt
data/
Mapping Estimated Water Usage/

5e7e10163632f4f0c84c51a8.zip

Publishing to Zenodo

The following figures illustrate the Tale as published to Zenodo using the WT internal integration and using PresQT.

The first images illustrates a tale published to Zenodo using the WT internal integration. The title, author, and descrip-
tion are all provided by the user during tale creation. The WT platform adds a note with a custom link allowing the
user to import and re-execute the tale in the WT system. WT also supports related identifiers, license, and keywork
metadata. The tale is published as a zipped bag.

The second image illustrates a tale published to Zenodo using the PresQT integration. The user is directed to the draft
dataset creation form where they are required to manually enter relevant metadata.

Metadata Support

To support our current Zenodo integration using the PresQT system would require the ability to specify additional
metadata during dataset creation. We use the following fields:

• Title

• Creator/Authors (first name, last name, ORCID)

• Publication date/date

• Description

• Subject/keywords

• Rights/license

• Related identifiers (Cites, Derived From)

• References

• Notes

The notes field is important as it provides a way for us to embed a link in the record that allows users to easily re-import
and run the published tale.

For more information, see https://github.com/whole-tale/serialization-format/

13.2 Whole Tale Integration Implementation

An ‘extra_metadata’ field has been added to the PRESQT_FTS_METADATA.json. To get these extra metadata fields
to the new resource being created, the uploaded resources must have a PRESQT_FTS_METADATA.json file at the
highest level.

The following is an example:

114 Chapter 13. Other Integrations

https://github.com/whole-tale/serialization-format/

PresQT

Fig. 1: Tale published to Zenodo via WT

13.2. Whole Tale Integration Implementation 115

PresQT

Fig. 2: Tale published to Zenodo via PresQT

116 Chapter 13. Other Integrations

PresQT

{
"allKeywords": [],
"actions": [],
"extra_metadata": {

"title": "str",
"creators": [

{
"first_name": "Example",
"last_name": "User",
"ORCID": "0931234123"

}
],
"publication_date": "2021-02-19",
"description": "This is it.",
"

s": [],
"license": "MIT",
"related_identifiers": [],
"references": "Nothing here.",
"notes": "Nope."

}
}

13.2. Whole Tale Integration Implementation 117

PresQT

118 Chapter 13. Other Integrations

CHAPTER

FOURTEEN

UNDER DEVELOPMENT

119

PresQT

120 Chapter 14. Under Development

CHAPTER

FIFTEEN

INDICES

• genindex

• modindex

• search

121

PresQT

122 Chapter 15. Indices

HTTP ROUTING TABLE

/api_v1
GET /api_v1/job_status/download.json/,

47
GET /api_v1/job_status/download.zip/,

49
GET /api_v1/job_status/transfer/, 58
GET /api_v1/job_status/upload/, 53
GET /api_v1/services/, 79
GET /api_v1/services/(str:

service_name)/, 79
GET /api_v1/services/eaasi/(str:

ticket_number)/?eaasi_token=(str:
eaasi_token), 83

GET /api_v1/services/eaasi/proposals/(str:
proposal_id)/, 82

GET /api_v1/services/fairshake/rubric/{str:
rubric_id}/, 85

GET /api_v1/services/fairshare/evaluator/,
83

GET /api_v1/services/presqt/keyword_enhancement/,
80

GET /api_v1/targets/, 40
GET /api_v1/targets/(str:

target_name)/, 41
GET /api_v1/targets/(str:

target_name)/resources/, 43
GET /api_v1/targets/(str:

target_name)/resources/(str:
resource_id).json/, 44

GET /api_v1/targets/(str:
target_name)/resources/(str:
resource_id).zip/, 47

GET /api_v1/targets/(str:
target_name)/resources/(str:
resource_id)/keywords/, 60

POST /api_v1/services/eaasi/proposals/,
81

POST /api_v1/services/fairshake/rubric/{str:
rubric_id}/, 86

POST /api_v1/services/fairshare/evaluator/,
84

POST /api_v1/targets/(str:

target_name)/resources/, 55
POST /api_v1/targets/(str:

target_name)/resources/(str:
resource_id)/, 56

POST /api_v1/targets/(str:
target_name)/resources/(str:
resource_id)/keywords/, 62

PATCH /api_v1/job_status/transfer/, 59
PATCH /api_v1/job_status/upload/, 54

123

	Architecture/Infrastructure
	Development Environments
	QA/Production Deployments

	Development Environment Setup
	Prerequisites
	Local Development Environment Setup
	Cron Container

	Authentication/Authorization
	Target Token Instructions

	User Notes
	Transfer Details

	Developer Notes
	Testing
	Docker Commands
	Updating Documentation
	GitHub Differences

	Target Integration
	Target Endpoints
	Resource Endpoints
	Resource Download Endpoint
	Resource Upload Endpoint
	Resource Transfer Endpoint
	Keyword Enhancement Endpoint
	Error Handling

	API Endpoints
	Authentication
	Duplicate File Handling
	Searching Resource Collections
	Paginating Resource Collections
	Target Endpoints
	Resource Endpoints
	Resource Download Endpoints
	Resource Upload Endpoints
	Resource Transfer Endpoints
	Keyword Enhancement Endpoints

	Web Services
	Fixity
	File Transfer Service (FTS) Metadata
	Keyword Assignment
	Preservation Quality

	Services
	EaaSI (Emulation-as-a-Service Infrastructure) Service
	FAIR Evaluator Service
	FAIRshake Assessment Service

	Service Endpoints
	Service Endpoints
	Keyword Enhancement
	EaaSI Endpoints
	FAIRshare Endpoints
	FAIRshake Endpoints

	Resources
	Links
	Example BagIts

	QA Testing
	Resources
	BagIt Tool
	Getting Authorization Tokens From Partner Sites
	Test Files
	Known Bugs And Issues
	Testing Instructions
	Verifying Fixity
	Verifying Keyword Enhancement
	Services

	Other Integrations
	Whole Tale Integration Proposal
	Whole Tale Integration Implementation

	Under Development
	Indices
	HTTP Routing Table

